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Octonions

Let k be a field, with char(k) 6= 2. A Hurwitz algebra over k is a Resulting structures on a Hurwitz algebra A
include a trace,

Tr(a) = N(a + 1)� N(a)� N(1),

and involution ā = Tr(a) � a. Hurwitz
algebras are quadratic:

a2 � Tr(a) + N(a) = 0.

finite-dimensional, unital, k-algebra A, together with a quadratic
form N : A ! k, such that the associated bilinear form is nonde-
generate and:

N(xy) = N(x)N(y), for all x, y 2 A.

Every Hurwitz algebra over k has dimension 1, 2, 4, or 8, as a k
vector space. An 8-dimensional Hurwitz k-algebra is often called a
Cayley or octonion algebra. The isomorphism class of a Cayley k-algebra

A is determined by the isomorphism class
of the quadratic space (A, N). The quadratic
form N of a Cayley k-algebra is always a
Pfister form. Every Pfister form of dimension
8 is hyperbolic or anisotropic. There are
no anisotropic forms over Qp of dimension
greater than 4. There are two dimension 8
Pfister forms over R. The isomorphism class
of a quadratic form over Q is determined
by local invariants. There is no local-global
obstruction for Cayley algebras.

Constructing all Cayley algebras (up to isomorphism)
over Q (or a local field) is not difficult. One construction is the
Cayley-Dickson process: begin with a quaternion algebra B over
Q. Define O = B � B as a Q-vector space. Define a Q-algebra
structure on O by:

If b 2 B, then b̄ = Tr(b)� b denotes the main
involution.

(u, v) · (z, w) = (uz� w̄v, wu + vz̄).

Define the main involution on O by (u, v) = (ū,�v).
Status update: The Cayley-Dickson construc-
tion is implemented in SAGE by J. Hanke and
M. Weissman.

A common construction of a “nonsplit” octonion algebra
Nonsplit here means that the quadratic form
is anisotropicover Q arises as follows: Let P2(F2) denote the projective space of

lines in F3
2 (a set with seven elements). Since F2 has one nonzero

element, there is a natural bijection Elements of P2(F2) are often called
e1, e2, e3, e4, e5, e6, e7 in the literature. This
construction of an octonion algebra is due to
Freudenthal.P2(F2) $ F3

2 � {0}.

Define O to be the Q-vector space whose basis is the set {1} [
P2(F2). If ~x 2 P2(F2), write e~x for the associated basis element of
O. Define a function f : P2(F2)⇥ P2(F2) ! F2 by: Given a long history of mistakes is the

subject, the signs given by f (~x,~y) should be
machine-verified: one should verify that one
gets an alternative algebra from this choice of
signs, by considering quantities like (e~xe~y)e~x ,
which should equal e~x(e~ye~x).

f (~x,~y) = Â
s2A3

xs(1)ys(1) + xs(1)ys(2) + ys(1)xs(2)xs(3).
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Figure 1: The Fano plane. The label abc refers
to the line through (a, b, c) 2 P2(F2).

Define a Q-algebra structure on O by identifying 1 as the unit,
and defining:

(e~x) · (e~y) = e~x+~y · (�1) f (~x,~y).

The main involution on O is determined by 1̄ = 1 and e~x = �e~x.
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Bhargava Cubes

The results on this page are all due to Manjul Bhargava1 Define a 1 Manjul Bhargava, Higher composition
laws. I. A new view on Gauss composition,
and quadratic generalizations, in Annals of
Mathematics, 2004.

Bhargava cube to be an element C 2 Z2 ⌦Z Z2 ⌦Z Z2.
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Figure 2: A Bhargava cube. Slicing along the
light line yields the two matrices:

M1 =
✓

a b
c d

◆
,

N1 =
✓

e f
g h

◆
.

The group SL2(Z)3 acts on the Z-module of Bhargava cubes,
via the tensor cube of the standard action of SL2(Z) on Z2. There
is a unique (up to normalization) quartic polynomial invariant for
the resulting geometric action; its (normalized) value is called the
discriminant, and denoted D(C).

From a Bhargava cube C, one may construct three ordered pairs
of matrices by slicing:

C : (M1, N1) or (M2, N2) or (M3, N3).

These yields three integer-valued quadratic forms, all of the same
discriminant D(C):

Qi(x, y) = �det(Mix� Niy), for i = 1, 2, 3.

The cube C is called projective if the three associated quadratic
forms Q1, Q2, Q3 are primitive. Projective cubes can be brought,
by the action of SL2(Z)3, into a “normal form” as displayed in the
margin.
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Figure 3: A Bhargava cube in normal form.
The three resulting quadratic forms, all of
discriminant D = m2 + 4e f g, are:

Q1(x, y) = �ex2 + mxy + f gy2,

Q2(x, y) = � f x2 + mxy + egy2,

Q3(x, y) = �gx2 + mxy + e f y2.

The following theorem is the starting point for Bhargava’s work:

Theorem 1 (Bhargava) Fix an integer D. The orbits of SL2(Z)3 on
the set of projective Bhargava cubes of discriminant D are in one-to-one
correspondence with the set of triples ([Q1], [Q2], [Q3]) of SL2(Z)-
equivalence classes of primitive binary quadratic forms of discriminant
D, such that [Q1] � [Q2] � [Q3] = [1], in the sense of Gauss composition.

The significance of Bhargava’s theorem is that it provides a
completely new definition of Gauss composition. Indeed, in any
group G, knowledge of the set of triples (g1, g2, g3) such that
g1 � g2 � g3 = 1 suffices to determine the group law. In practice,
it implies that, given two primitive quadratic forms Q1, Q2, there
exists a projective Bhargava cube C in normal form, from which
Q3 can be easily computed.
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Figure 4: A Bhargava cube of discriminant
�20.

For example, consider the following two quadratic forms of
discriminant �20:

Q1(x, y) = x2 + 5y2.

Q2(x, y) = 3x2 � 2xy + 2y2.

These fit into the cube at the right. The third quadratic form is:

Q3(x, y) = 2x2 � 2xy + 3y2.

Since [Q3] = [Q2] and [Q1] = [1], [Q2] · [Q2] = [1].
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Orders and an Embedding Question

Let O denote the nonsplit octonion algebra over Q, with basis
{1} [ P2(F2). We are interested in writing down a maximal order
in O. The naive guess Wng = Z �L

~x2P2(F2) Ze~x at a maximal
order in O is incorrect! The correct maximal order was identified
by Coxeter2, after many mistaken attempts (e.g. by Kirmse). There 2 H.S.M. Coxeter, Integral Cayley Numbers,

Duke Math J., 1946exists a maximal order W, which contains Wng with index 16;
Coxeter describes this order explicitly. The history of mistakes, and the fact that

our description of O differs from Coxeter’s,
suggests we should recompute the correct
maximal order W, and check our work using
computer assistance. First,

Wng ⇢ W ⇢ 1/2Wng .

One should check that the lattice W has the
following properties: the lattice, with the
norm form, is isometric to the E8 root lattice
(with 240 elements of norm 1). It should also
be closed under multiplication.

The following statements characterize the order W as a lattice
containing Wng: if ~x + ~y = ~z, in P2(F2), then the octonion 1/2 ·
(±1 ± e~x ± e~y ± e~z) is in W. Furthermore, W contains an element
w = 1/2 · (e~x + e~y + e~z + e~w), for some ~x,~y,~z, ~w 2 P2(F2), such that
N(w) = 1.

The maximal order W (unique up to conjugation by Aut(O/k))
is isometric to the E8 root lattice. The theta function of the E8 root
lattice is just the Eisenstein series E4 (of weight 4, level 1); for this
reason, there is a formula for the number of integral octonions
(elements of W) of any given norm:

#{w 2 W : N(w) = n} = 240 · Â
d|n

d3.

There is a connection between Bhargava’s cubes and Cox-
eter’s integral octonions, arising from modular forms on excep-
tional groups. In my work on D4 modular forms3, the following 3 M. Weissman, D4 Modular Forms, Amer. J.

of Math., 2006quantities arise: Suppose that C is a projective cube, in normal
form, with D = D(C) < 0, as pictured on the right.

f m

0 g

0 e

1 0

Figure 5: A Bhargava cube in normal form.
Suppose that D = m2 + 4e f g < 0.

Define:

For three octonions a, b, g, it happens that

Tr((ab)g) = Tr(a(bg)).

Call this quantity Tr(abg).

Emb(C, W) =
⇢

(a, b, g) 2 W3 such that
Na = �e, Nb = � f , Ng = �g, Tr(abg) = m

�
.

This counts the number of embeddings of “QT-structures” (triples
of quadratic lattices endowed with a trilinear form), from a QT-
structure coming from a Bhargava cube, into the QT-structure
arising from O (with the norm quadratic form and the trace trilin-
ear form).

Theorem 2 If C and C0 are in the same SL2(Z)3-orbit, then Emb(C, W) =
Emb(C0, W). The numbers Emb(C, W) are the Fourier coefficients (in-
dexed by cubes) of a “theta function” for the group Spin4,4.

The quantities Emb(C, W) should be machine-computable, espe-
cially for cubes of small (and perhaps prime) discriminant. These
quantities should be identifiable with the Fourier coefficients of an
Eisenstein seris, but this has not yet been proven.
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Computations and questions

Bhargava’s theorem, and the previous result, suggests that one
should carry out the following:

• Choose a negative discriminant D.

• Choose a triple [Q1][Q2][Q3] = [1] of classes of binary
quadratic forms of negative discriminant D.

• Find a cube C which “encodes” these classes by slicing.

• Compute the quantity Emb([Q1], [Q2], [Q3], W) = Emb(C, W).
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Figure 6: A Bhargava cube in normal form,
with D = �20. It reflects the identity
[1] · [1] · [1] = [1]
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Figure 7: A Bhargava cube in normal form,
with D = �20. It reflects an identity
[Q] · [Q] = [1]

Such quantities fit into a general class of embedding problems
including the following:

• The classical “representation of quadratic forms by quadratic
forms” problem can be rephrased as counting embeddings
of a definite quadratic lattice into another definite quadratic
lattice.

• If K is a quadratic imaginary field, and A is a maximal order
in K, and e is the Dirichlet character associated to K/Q, then
Emb(A, W) (the number of unital algebra embeddings) is
equal to �252L(e,�2) by a result of Gross-Elkies4.

4 B. Gross and N. Elkies, Embeddings into
the integral octonions, Pac. J. of Math., 1997

In particular, I would hypothesize that Emb(C, W) can be com-
puted via an Euler product. The specific form of this product
should be “guessable” from enough computations.

Observe that Emb([Q1], [Q2], [Q3], W) assigns an integer to each
“collinear” triple in a class group. There are some immediate
questions:

Suggested computational project, involving
Emb(C, W) for the two cubes above: Count
triples (a, b, g) 2 O3 such that Na = 1,
Nb = 2, Ng = 3, Tr(abg) = �2. Then,
count triples (a, b, g) 2 O3 such that Na = 1,
Nb = 1, Ng = 5, and Tr(abg) = 0. One
can definitely use tricks to speed up the brute
force! Do these counts yield the same result?
What are the results?

• Do these integers depend the elements in the class group?
Do the integers only depend upon the genus of the quadratic
forms, or the spinor genus?

• Do these integers “look different” (bigger or smaller), when
the structure of the class group is different (e.g., cyclic of
order 4 or the Klein 4-group)? Can one see differences in
the fine structure of the class group from these integers (a la
Cohen-Lenstra)?

• Can one guess a simple Euler product, or less simple but
well-known L-value for the numbers Emb(C, W)? The de-
grees of the Euler factors should be guessable by computing
dimensions of Lie algebras over finite fields. The fact that these integers are given by

an Euler product is probably not difficult
to prove. But, there might be some very
bad Euler factors, arising from masses of
nonmaximal lattices in a rank 3 Hermitian
space.

Any such answers could be helpful. Since these integers are the
coefficients of a theta function on Spin4,4, analytic techniques are
available to estimate (bound) these integers as the discriminant
grows.


