
December 14, 2007

Dear Weissman,

For me, the aim is to understand “metaplectic” forms on semi-simple groups, the hope

being that they are not “new” object, but rather correspond to usual automorphic forms

on some other groups, on which they give new information. I would like to have precise

conjectures on the hoped for correspondence, and I view my paper [4] with Brylinski as

setting a landscape in which conjectures should fit. As you do, I hope there are conjectures

valid for all reductive groups, and that the case of tori gives us useful constraints on what it

makes sense to conjecture. Additional constraints should be taken into account:

(1) There should be compatible global and local stories.

(2) There should be a compatibility with (global or local) fields extensions. The fact that

the description [4] is functorial in the field matters here.

(3) There should be a geometric counterpart to the tame local or char. p global story:

“geometric Langlands program”.

(4) Existing examples are to fit in. To those you mention, I add Pattrson (on cubic Gauss

sums) and Lysenko (Ann. ENS 39 3 (2006)) on a geometric metaplectic case.

Langlands [10] suggests to me that for a general torus, T (A)/T (F ) is not the best thing

to consider: the story simplifies if one considers [T (A′)/T (F ′)]Γ, for F ′/F a Galois extension

with group Γ which splits T . The result does not depend on F ′, and for F a global field

of char. p with field of constants Fq, it is the group of Fq-points of a group scheme over

Fq, which fits with geometric Langlands. Automorphic representations should be defined as

corresponding to quasi-characters of this [T (A′)/T (F ′)]Γ, which I will write T (A/F ).

I dislike Langlands cocycle picture of the dual group as a semi-direct product. For me,

the correct picture is the following. For G reductive over a (reasonable) scheme S, the dual



G∧ is a local system, over Set, of split pinned reductive groups over Spec(Z). This means

the data, locally on S for the etale topology, for U/S etale connected of Ĝ[U ] split pinned

/Spec(Z), functorial in U (in the category of split pinned groups and isomorphisms of such).

For usual automorphic forms, the Ĝ might be better replaced by Ĝ⊗Z C (local system on

Set of complex reductive groups). For the purely algebraic story of (Q̄-valued) automorphic

forms on G/function field, one may prefer Ĝ ⊗Z Q̄.

About what you do. I don’t see how your local classification could lead to meaningful

global conjectures, and I dislike that you choose an uniformizing parameter.

Let me consider the simplest case: over F , Gm, the central extension by K2 given by the

cocycle {x, y}, and n = 2. I exclude equal characteristic 2. The central extension considered

has F ∗ as group of automorphisms: Hom(Gm, K2) over F . What has a nice answer is:

∗ For F local (resp. global), the orbits of the automorphism group F ∗ of the extension

of Gm by K2 on the set of irreducible genuine representations of the corresponding central

extension fo F ∗ by µ2 (resp. of genuine automorphic representations).

The central extension of F ∗ (resp. A∗) by µ2 is abelian. We are hence considering orbits

of F ∗ acting on genuine quasi-characters of the extension of F ∗ by µ2 (resp. of (extension

of A∗ by µ2)/F ∗). The action is: multiplication by (f, ∗)2. The (f, ∗)2 are all characters of

order 2 of F ∗ (resp. of A∗/F ∗). Orbits are hence given by the restriction to the inverse image

of F ∗
2

(resp. (A∗/F ∗)2). On the squares, the extension canonically splits. The classification

is hence by characters of F ∗
2

(resp. (A∗/f ∗)2). Equivalently: by the characters of F ∗ (resp.

A∗/F ∗) which are squares [by χ #→ χ◦ (squaring: F ∗ → F ∗
2

or (A∗/F ∗) → ( )2)].

This is coarser than what you do, but the only thing so far I am able to make sense of

globally as well as locally.

Here is another fact which puzzles me. Let me be tame, and for simplicity consider

F = Fq((t)). Then, the central extension of F ∗ by F∗

q given by the tame symbol as cocycle is

not the best one can do. Let P be the commutative Picard category of mod 2 graded lines
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on Fq. It is not strictly commutative: L⊗L → L⊗L is −1 for L of degree 1. For G a group

and Q a Picard category, one can speak of a central extension of G by Q: g ∈ G #→ Qg with

Qgh ∼ QgQh compatible with associativity. For Q commutative and G commutative, we get

a “commutator”: G × G → π1(Q):

QgQh = Qgh = Qhg = QhQg → QgQh.

There is a canonical central extension of Fq(t)∗ by P, whose commutator is the tame symbol.

Should one not also consider corresponding automorphic forms? This story works well for

global fields of char. p [central extension of A∗ by P trivialized over F ∗], and is geometric.

I hope that some light might come from the following question.

Consider G reductive over k[[t]], k algebraically closed. Consider the Ind k-scheme

G(k((t)))/G(k[[t]]) (the affine grassmannian). Extensions of G by K2 give rise to extensions

of G(k((t))) by k∗, split over G(k[[t]]), hence to a line bundle L on the affine grassmannian,

G(k((t)))-equivariant. Fix an integer n and ε : µn(k) ↪→ Q̄ℓ
∗. We can then consider (L, ε)-

twisted G(k[[t]])-equivariant perverse sheaves on the affine grassmannian. “Twisted” means

it is really perverse sheaves on L-(0-section) (shifted by 1: [−1]) with monodromy ε around

the 0 section. On this category, we have a convolution functor, which is the geometric

counterpart of product in the (metaplectic) Hecke algebra. Arguments of Beilinson and

Drinfeld should turn it into an associative commutative tensor functor. Question: Do we

get a category of representations of a (“dual”) group over Qℓ? Or of a super group? Which

one?

This could be more precise than trying to match a Hecke algebra with a representation

ring. If we start with G over a curve, we hopefully get a local system of tannakian categories.

Whether it should come from a local system of split pinned groups over Q̄ℓis not clear.

Lysenko addresses this question for the symplectic group. I quote a question I had for

him:

A question: Let G be split reductive over k((t)). If Y is the cocharacter
group of a split maximal torus, a Weyl gorup invariant integral quadratic from
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Q on Y determines an (isomorphism class of) extensions of G, viewed as infinite
dimensional over k, by the multiplicative group. For any D, one can then repeat
your definition of genuine spherical sheaves, using the gerb of Dth roots of a
corresponding line bundle over the affine grassmannian. I would hope that again
one gets a tannakian category. The simple objects would this time be indexed
by Y1/W , where Y1 is the following sublattice of Y : for B(x, y) = Q(x + y) −
Q(x) − Q(y) the bilinear form associated to Q,

Y1 = {y in Y |B(y, Y ) ⊂ DZ}.

The story should depend only on the rational valued quadratic form Q/D, and
the group corresponding ot the tannakian category should have Y1 as weight lat-
tice and W as Weyl group. Inspired by what you obtain for Sp (with Q(short root) =
1, D = 2 and Y1 = Y ) one can make a guess as to what the root system E1 ⊂ Y
should be:

R1 = {α. (denominator of Q(α)/D)|α in Y a coroot}?

Could you tell me how much of this has been investigated? Please warn me
if I delude myself.

Here are some comments on your text:

Line 6–11 of 0. Main Results: I am not convinced by the usefulness of this panoply. For me,

the useful category should be that of [4], and one should remember the functoriality in F .

For the category of [4], π0 = quadratic forms on Y , π1 = Hom(Y, F ∗), and it is incarnated

by

Z → X ⊗ X

with Z deduced from X ⊗ X by pushing:

Γ2(X) −−−→ X ⊗ X
⏐⏐#

⏐⏐#

X ⊗ F ∗ −−−→ Z

with first vertical γ2(x) [= x ⊗ x in Γ2 = symmetric tensors] mapping to x ⊗ (−1).

§1
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1.2 I hope the definition 1.2 is not mine. One should require “non empty”, and then the

unit follows.

1.5 “intertwines” should be a datum.

1.6 It is distasteful to me to view as a category what is a 2-category. I like all definitions to be

such that a category should matter only up to equivalence unique up to unique isomorphism.

Here, homotopies give ismorphisms of functors.

line before 1.5: Tell {u, u} = {u,−1}?

3 lines before 1.13: Tell your sign convention for (x, y)n.

1.13: Tell simply that {π, π}n = (−1)(q−1)/n.

5.2 Why don’t you just define Yσ by this formula?

7.2 The proof seems nonsense. You rather want to check that the commutator map, which,

as T̃ ′

F is a centralizor, is defined on the image of T̃ ′

F in TF /T 0
F , is trival there.

§8. The topological K2(C) is trivial, and neither it nor its algebraic analog will help you

with the topological K2(R) (= µ2). I am sceptical of what you tell. Please look at [4] 12.6,

12.7.

All the best,

P. Deligne
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E-mail: weissman@ucsc.edu

January 20, 2008

Pierre Deligne
Institute for Advanced Study

Dear Deligne,

Thank you very much for taking a close look at my work, and for your
generosity in ideas.

Regarding your comment that metaplectic forms should “correspond to
usual automorphic forms on some other groups”: I have the following hope
related to “metaplectic functoriality”. The parameterization in my paper
arises (after unavoidable choice of “pseudo-trivial” base point) from a two-
term complex of complex dual tori T̂ ! T̂ #, which depends on the original
data defining the metaplectic extension. Given a morphism of two-term
complexes, i.e. a commutative diagram:

T̂1
//

≤≤

T̂ #
1

≤≤

T̂2
// T̂ #

2

,

one can lift packets of genuine irreducible representations of T̃1 to packets
of such representations of T̃2. When one of these two-term complexes is an
identity map (corresponding to an ordinary torus T2), one finds lifting of
packets of genuine irreducible representations of T̃1 to ordinary quasichar-
acters of T2.

Perhaps something like this can be generalized to other groups; one could
consider the Langlands dual group, endowed with a suitable isogeny of tori.

Regarding your comment “There should be compatible global and local sto-
ries”: I believe that there is a global result (for split tori) that is compatible
with my local result. By taking care of the “local story” for tame covers of
unramified tori, I have aimed to treat “almost all” local stories for a given
global metaplectic torus. In Remark 4.9 of the new draft, I describe a global
result for split tori.



Regarding your suggestion, following Langlands, to consider automorphic
representations of a torus as quasicharacters of [T(AL)/T(L)]°, where L is
a splitting field of T: This has certainly been a helpful point of view, and
one which I had not appreciated before. However, I am still unsure of what
the correct notion of an “automorphic representation” is, for general global
metaplectic tori. For split tori, I believe I understand the correct notion,
but for nonsplit tori, I am having di±culty. This is partly why Remark 4.9
is limited to split tori.

Regarding your comment “I dislike Langlands cocycle picture of the dual
group”, I believe that I understand your dislike. I have chosen what I believe
is a “middle-ground” between your suggestion of viewing the dual group as a
local system, and Langlands point of view. Namely, I have chosen to define
the dual torus as a torus over Z, endowed with Galois action – I believe that
this diÆers from a local system only in the language used (I also work over
a base field rather than a more arbitrary scheme).

Regarding your comment “I dislike that you choose a uniformizing param-
eter”, I share your distaste for noncanonical choices. However, I do not
think I am able to cleanse the paper completely of this choice, though a
more skilled technician would probably have the ability. I would be happy
especially if Section 5 of my paper could be made cleaner and more canoni-
cal, but I have not yet succeeded in this endeavor. On the other hand, the
results do not depend in any way on the choice of uniformizing element. So
hopefully, the choice of uniformizing parameter will not spoil the paper too
much.

Regarding your example of the simplest case, of an extension of F£ (or A£)
by µ2, I believe that I have successfully generalized this example to arbitrary
extensions of split tori by K2, both locally and globally.

Regarding the “geometric Langlands” analogues: I would like to tackle
these problems in a future paper. I am especially interested in your re-
mark/question about whether a category agrees with the category of rep-
resentations of a super-group. When I began to study metaplectic tori, I
noticed that the representations of the analogue of a spherical Hecke algebra
corresponded to representations of a quantum dual torus (quantized at a cer-
tain root of unity). I have placed this observation in Remark 6.9. In many
situations, this would involve quantization at °1, and may be equivalent to
looking at a super-group.

Regarding your specific comments on my paper, I am very thankful for the
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advice. I have completely removed the “panoply” involving a functorial con-
struction of split metaplectic tori, and chosen instead to follow the approach
suggested by your paper with Brylinski. I am hopeful that your comments
have considerably improved the quality of my paper.

Following Section 12.11 of your paper with Brylinski, I consider an extension
of tori in Section 6.1 of my paper. In Remark 6.1, I wonder whether the
construction of your paper could be related to an extension of °-modules
constructed more directly. Perhaps you have thought about this as well, as
it related to Question 12.13 of your paper.

I was delighted to receive the previous feedback on my work, and I would
welcome any other comments you might oÆer.

Sincerely yours,

Martin Weissman
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August 24, 2011

Dear Weissman,

While I don’t like the classical description of parameters in term of the semi-direct product

G∨!Gal, I found your wish to construct a non trivial extension of Gal by G̃∨ very interesting.

Long ago, when I asked Langlands “why the semi-direct product?”, he answered “what else

can you define?”. Here you can!

I don’t like Hopf algebras, which for me hide the geometry (meaning either the group

scheme, or the category of representations), and I hope one can get rid of them. You did it

for the first twist: one has just a cocycle with values in elements of order 2 of the center of

G̃∨. I did not understand your second twist yet, in part because you use works of Lusztig I

am not mastering. I would like to understand the constructed extension

G̃∨ → ∗ → Γ

by first understanding the inverse image of γ ∈ Γ as a right and left principal homogeneous

space under G̃∨. First I need to make sure that G̃∨ is what I think it is: it is given with

T̃ ∨ ⊂ B̃∨ ⊂ G̃∨, and a pinning (generators of the Lie(G̃∨)α for α a smple root; in french:

épinglage), this defining it up to unique isomorphism. Your text does not mention the

pinning, which makes me worry.

Here is how I like to think to the classical G∨ and GL. Suppose G is a reductive group

over a scheme S. Locally for the etale topology on S, G is split, and the meaning of G∨ is

clear. We get G∨ to be a local system, on the etale site Set of S, of pinned split reductive

gorups over Z. Even for S = Spec(F ), F a field, I prefer to speak in term of sheaves over

Spec(F )et rather than to choose a separable closure F̄ of F and use actions of Gal(F̄ /F ).

For instance, one can consider l-adic sheaves on Spec(F ). Once F̄ is chosen, it is the same

as l-adic representations of Gal(F̄ /F ), but the notion of l-adic sheaf does not require the

choice of a F̄ . Similarly, here is how to view morphisms

Gal(F̄ /F ) → GL(Ql) (1)

projecting identically to the Gal quotient of GL.

Let us say that an etale extension F ′ of F is large enough if on F ′ G becomes an inner

form of a split group (= the connected component of the center is a split torus, and the action

of Gal(F̄ ′/F ′) on the Dynkin diagram is trivial. This action is the action of Gal(F̄ ′/F ) on

the set of conjugacy classes of maximal parabolics of G ⊗F ′ F̄ ′). If F ′/F is large enough,
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the dual G∨[F ′] of G ⊗F F ′ is defined. It is a split pinned reductive group over Z, and

for F ′ → F ′′ a morphism between large enough etale extensions of F , we have a canonical

isomorphism G∨[F ′] ∼→G∨[F ′′]. This is the sense in which G∨ is a local system on Spec(F )et.

One can now view a map (1) as the same thing as the following: the data, functorial in

F ′/F large enough and in a representation V of G∨[F ′] over Ql, of a Ql-sheaf F(F ′, V ) on

Spec(F ′), plus a compatibility data

F(F ′, V1) ⊗ F(F ′, V2)
∼→F(F ′, V1 ⊗ V2) (2)

Requested: F is an exact tensor functor in V , and F(F ′, V ) ∼→F(F ′′, V ) for F ′′/F ′ (compat-

ible with (2)).

What I like in that description is that there was no need to first choose F̄ , and that one

can replace in it “Ql-sheaf” by objects of a de Rham flavor, or try to replace it by “motives”.

For dR, one will be led to consider the G∨[F ′]⊗Z F ′: this is a reductrive group given locally

over Spec(F )et, and descends to a reductive group G∨

F over F , given with a maximal torus,

a Borel containing it, and a pinning.

Note that we did not really need G∨[F ′], but only its tensor category of representations,

and that the latter depends only on the (trivial) gerb of G∨[F ′]-torsors: a representation is

a way to attach functorially to a G∨-torsor a vector space [I would need the fppf site here

to be correct].

An extension

G̃∨ → ∗ → Γ

defines such a gerb, hence your parameter would also have an interpretation as above.

To help me guess what your second twist is, could you tell me what the trists are for G

a torus.

A few local comments:

Page 7 Construction 1.3. It might be worth observing that the construction depends only

on the quadratic form 1

n
Q on Y with values in Q, not separately on n and Q. This is clearer

if you say: ni denominator of 1

n
Q(α∨

i ), and 1

n
B(y, y′) ∈ Z.

Page 16, line -4. You might mention that h(γ1, γ2) gives the action of γ1 on the nth roots

of rec(γ2): Hilb is the comparison of class field and Kummer theories. In 3.11, η gives the

action of γ on nth roots of −1.
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Construction 2.5 “essentially surjective”: I would prefer: “a functor from . . . to . . . which is

surjective on isomorphism lasses of objects”, if this is what you mean.

Before Proposition 3.17: Add: “This is a short exact sequence in the following sense:”? [It

is also a short exact sequence of fppf sheaves on Spec(Z).]

You are extremely cautious about viewing an ordinary finite group as a group scheme

(over Spec Z or, by base change, over anything). I like to think to it as follows: a set E

defines a scheme E
¯

over Spec(Z): the disjoint sum of copies of Spec(Z) indexed by E. It is

affine when E is finite. The functor E &→ E
¯

is left adjoint to “Z-points of”. It is compatible

with finite limits or colimits, hence transforms groups into groups. If schemes over Spec(Z)

are viewed as sheaves over some big site, it is E &→ constant sheaf E.

Another thing I dislike about the classical story is that unitary induction is used, and

that it makes the story irrational (= not defined over Q: some
√

p are introduced). To

exorcise this, I was led to consider in a reductive group G the canonical central element of

order 2 which over the algebraic closure can be described as Πα∨(−1) (product over positive

roots), and dually to consider a canonical double covering. It does not seem related to what

you do but, if I can find them, I will send you my notes (= a letter to Serre) anyway.

Best,

P. Deligne
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Dept. of Mathematics, UC Santa Cruz

October 14, 2011

Pierre Deligne
deligne@math.ias.edu

Dear Deligne,

Thank you for your advice sincere feedback on my work. First, I must apologize
for the tardy reply. Since your letter in August, I have married, traveled to
Vietnam on honeymoon, and I am teaching this semester. Life has been happy
and busy. I hope I have not forgotten too much in the past two months. I’m
excited about the ideas you’ve mentioned, and I’ve attempted to learn more
about gerbes and Tannakian categories. I think I can answer some of your
questions and concerns.

Regarding Hopf algebras, I share your distaste. They seem to me most use-
ful for checking identities mechanically, not for gaining intuition. Especially
for checking compatibility between the two twists (checking that the twisted
comultiplication and twisted multiplication formed a bialgebra), I knew that
some mechanical work would be involved. The Hopf algebra approach seemed
transparent for a referee to check, at least.

Regarding your concern about the pinning, I believe that the construction using
Lusztig’s canonical basis gives a group scheme over Z with a pinning. The torus
and Borel are constructed along with the group scheme, and the generators of
the Lie algebras of the root subgroups are elements of the canonical basis of
Lusztig. Perhaps this should be mentioned explicitly in my work.

I appreciate your detailed explanation of why it is better to work with local
systems on the étale site over F rather than semidirect products. This is some-
thing you mentioned in an earlier letter (14 December 2007) but which I did
not fully understand at the time.

Now, I will attempt to translate my double-twist into the framework you men-
tion. Let F be a local field (not isomorphic to C), and F

et

the étale site. Let G
be a connected reductive group over F with root datum � = (X,Y, . . .). Let G0

be a central extension of G by K2, over F , as discussed and classified in your
paper with Brylinski. Let n be a positive integer, such that the equation ⇣n = 1
has n solutions in F . Let ✏ : µ

n

(F ) ! Q̄⇥
`

be a homomorphism. Suppose, for
simplicity, that G is split over F .

In this case the dual group G

_ makes sense as a split pinned reductive group
over Z. Let Sh(F

et

, Q̄
`

) be the tensor category of Q̄
`

-sheaves on F
et

. Let
Rep(G_, Q̄

`

) be the tensor category of representations of G_ over Q̄
`

.



Then, if I understand your suggestion in the split case, one can view a morphism
from Gal(F̄/F ) to the L-group, lying over Gal(F̄/F ), instead as an exact tensor
functor:

(⇢, r) : Rep(G_, Q̄
`

) ! Sh(F
et

, Q̄
`

).

Here ⇢ denotes the Q̄
`

-linear functor on the underlying Q̄
`

-linear abelian cate-
gory, and r denotes the functorial system of isomorphisms:

r : ⇢(V1)⌦ ⇢(V2) ! ⇢(V1 ⌦ V2).

The data (⇢, r) replace a “G_(Q̄
`

)-valued Galois representation” in this case.

Now, I will attempt to incorporate the metaplectic data.

First, the central extension of G by K2 defines, in a functorial way, a central
extension

F⇥ ! E ! Y.

Second, the central extension of G by K2 defines a Weyl-invariant quadratic
form Q : Y ! Z, with associated bilinear form B : Y ⇥ Y ! Z.

In my paper, following work of Finkelberg-Lysenko, Reich, and others, I explain
how the quadratic form Q can be used to modify the root datum �; let �̃_ be
the modified dual root datum. In this modification, Y is replaced by

Ỹ = {y 2 Y : B(y, y0) 2 nZ for all y0 2 Y }.

The other details are found in my paper. This modified root datum yields a

split pinned reductive group ˜

G

_
over Z.

Let C : Y ⇥ Y ! F⇥ be a 2-cocycle incarnating the central extension E of Y
by F⇥. Then for each y1, y2 2 Y , we obtain a Q̄

`

-sheaf on F
et

as follows: for
each finite Galois extension F 0/F in which C(y1, y2) is an nth power, choose an
element x

F

0 2 F 0 such that xn

F

0 = C(y1, y2). For each F -algebra homomorphism
� : F 0 ! F 00 of such Galois extensions, define

c
�

(y1, y2) = ✏

✓
�(xn

F

0)

x
F

00

◆
2 µ

n

(Q̄
`

).

The data c
�

(y1, y2) gives an Q̄
`

-sheaf H(y1, y2)on F
et

.

For all y1, y2 2 Ỹ , we have C(y1, y2)/C(y2, y1) = (�1)B(y1,y2) 2 (�1)nZ. This, I
think, determines an isomorphism of `-adic sheaves:

h(y1, y2) : H(y1, y2) ! H(y2, y1).

The cocycle condition, C 2 Z2(Y, F⇥), determines an isomorphism

h(y1, y2, y3) : H(y1, y2 + y3)⌦H(y2, y3) ! H(y1, y2)⌦H(y1 + y2, y3).
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It seems to me that there is a nicer way of carrying this out, as a functor (2-
functor) from a category of central extensions of Y by F⇥ to a category of
central extensions of Y by the Picard category of rank-one Q̄

`

-sheaves on F
et

.
I leave this for a later time.

The Hilbert symbol, composed with the reciprocity isomorphism of class field
theory, gives a cocycle  2 Z2(Gal(F sep/F ), µ

n

), once a separable closure F sep

is chosen. I believe that, suitably rephrased, this  gives a µ
n

-gerbe (up to
unique isomorphism, I hope) on F

et

. Taking a suitable hypercovering U• of F
in the étale site, the cocycle  gives elements 

ijk

2 µ
n

(F
i

⌦
F

F
j

⌦
F

F
k

) for
triples F

i

, F
j

, F
k

of su�ciently large extensions of F .

The homomorphism ✏ from µ
n

(F ) to Q̄⇥
`

allows us to consider the m-twisted
`-adic sheaves on F

et

for any m 2 Z/nZ. Namely, an m-twisted `-adic sheaf
on F

et

is a family of `-adic sheaves S
i

on su�ciently large extensions F
i

/F , and
gluing isomorphisms �

ij

: Res
ij

(S
i

) ! Res
ij

(S
j

) of sheaves on F
ij

= F
i

⌦
F

F
j

,
satisfying a twisted gluing condition

�
jk

� �
ij

= ✏(m

ijk

)�
ik

(I learned this machinery from A.J. de Jong, “A result of Gabber”. I don’t
know much more about twisted sheaves).

Let Sh
m

(F
et

, Q̄
`

) be the category of m-twisted Q̄
`

-sheaves on F
et

. Let

Sh•(Fet

, Q̄
`

) =
Y

m2Z/nZ
Sh

m

(F
et

, Q̄
`

).

Then Sh•(Fet

, Q̄
`

) is a tensor category, I think, with the tensor product respect-
ing the twist:

⌦ : Sh
m1(Fet

, Q̄
`

)⇥ Sh
m2(Fet

, Q̄
`

) ! Sh
m1+m2(Fet

, Q̄
`

).

Now, I think I can describe the modification for metaplectic groups, whenG = T

is a torus. In this case, T_ is a split torus over Z with character lattice Y , and
˜

T

_
is a split torus over Z with character lattice Ỹ . For any y 2 Ỹ , let V

y

be
the standard (underlying vector space is just Q̄

`

) irreducible representation of
˜

T

_
over Q̄

`

, with weight y. Thus

V
y1 ⌦ V

y2 = V
y1+y2 = V

y2 ⌦ V
y1 .

A metaplectic parameter should consist of a pair (⇢, r), where

⇢ : Rep(˜T
_
, Q̄

`

) ! Sh•(Fet

, Q̄
`

)

is a Q̄
`

-linear functor such that ⇢(V
y

) 2 Sh
Q(y)(Fet

, Q̄
`

) and r = {r
y1,y2 : y1, y2 2

Ỹ } is a system of isomorphisms

r
y1,y2 : ⇢(V

y1)⌦ ⇢(V
y2) ! ⇢(V

y1+y2)⌦H(y1, y2),

3



for all y1, y2 2 Ỹ , (note thatQ(y1+y2) = Q(y1)+Q(y2), mod n, since y1, y2 2 Ỹ )
such that

1. For y1, y2, y3 2 Ỹ , the diagram

⇢(V
y1)⌦ (⇢(V

y2)⌦ ⇢(V
y3))

Id⌦r//

assoc

✏✏

⇢(V
y1)⌦ ⇢(V

y2+y3)⌦H(y2, y3)
r// ⇢(V

y1+y2+y3)⌦H(y1, y2 + y3)⌦H(y2, y3)

Id⌦h(y1,y2,y3)

✏✏
(⇢(V

y1)⌦ ⇢(V
y2))⌦ ⇢(V

y3)
r⌦Id// ⇢(V

y1+y2)⌦ ⇢(V
y3)⌦H(y1, y2)

r⌦Id// ⇢(V
y1+y2+y3)⌦H(y1, y2)⌦H(y1 + y2, y3)

commutes

2. For all y1, y2 2 Ỹ , the diagram

⇢(V
y1)⌦ ⇢(V

y2) //

comm

✏✏

⇢(V
y1+y2)⌦H(y1, y2)

Id⌦h(y1,y2)

✏✏
⇢(V

y2)⌦ ⇢(V
y1) // ⇢(V

y1+y2)⌦H(y2, y1)

commutes.

3. ⇢ sends the trivial representation V0 to the constant sheaf Q̄
`

.

These are twisted versions of the conditions for a tensor functor, from your
paper with Milne on Tannakian categories.

Of course, I hope that these parameters (⇢, r), inspired by your perspective on
Langlands parameters, will lead to a good idea for connected reductive groups,
split or not. I will continue my investigations along these lines, and of course I
would enjoy continued conversation.

Another direction would be to follow your remark that one can consider de
Rham or motivic variants. One possibility that strikes me as interesting would
be the archimedean case, even for a double cover of a torus over R. There,
I would hope that a metaplectic parameter as I’ve defined it corresponds to
something interesting in Hodge theory.

As always, I appreciate your advice. One possibility, if you are available, would
be to discuss this in person sometime in December. I finish teaching around
December 5, and I plan on visiting family in New York and Washington DC
shortly after. I would be happy to stop by IAS sometime if you are around.

Sincerely,

Marty Weissman
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October 25, 2011

Dear Weissman,

Your construction continues to perplex me.

The first twist I hope I understand: Q
n
, restricted to Ỹ , is with values in 1

2Z and, mod Z,

is an homomorphism Ỹ → 1
2Z/Z which vanishes on the α̃∨

1 , giving a central element of order

2, call it z, of G̃∨. You use it to define, by a cocycle, on extension of Gal(F̄ /F )ab by G̃∨:

G̃∨ → E
π−→ Gal.

Let me assume n even. For the second twist, at least in the case of tori, you modify

the multiplication of functions on each π−1γ, γ ∈ Gal, using the restriction of a bisector

C to Ỹ . If I understand correctly, this restriction is symmetric and C(ỹ1, ỹ1) is hence an

homomorphism l : Ỹ → Z/2 (the same as before?). One hence has C(ỹ1, y2) = l(ỹ1)l(ỹ2)+A

with A alternating, hence associated to a quadratic form. If one chooses such a quadratic

form, call it α, and view it as with values in ±1, in the basis of the α(ỹ1), ỹ1, of functions on

π−1(γ), the new multiplication corresponds to addition of ỹ’s, times (−1)l(ỹ1)l(ỹ2). We also

have Gal → ±1, giving its action on nth root of −1, and the modification has to be done

only for the π−1(γ), γ → −1.

In the new basis, the modification can also be described as follows: our element z of

order 2 acts by translations on π−1(γ), and for γ → −1, this allows us to twist π−1(γ) by

the µ2-torsor of square roots of −1.

This kind of twist makes good sense for any G, split or not, but unfortunately does not

use the extension of Y (torus) by Gm over Spec(F ).

In the simplest case, I do not understand why this second twist: take G = Gm, n = 2,

extension by µ2 defined by (x, y)2, viewed as a cocycle. Hence

Y = Z, Q(n) = n2, Ỹ = Y,

G̃∨ = Gm again, with z = −1

and (possibly I made a mistake here) the second twist occurs when −1 is not a square, above

γ such that γ
(√

−1
)

= −
√

−1 .

Here, the central extension of Gm used is commutative, and isomorphism classes of gen-

uine representations can be identified with functions χ on F ∗ such that χ(xy) = χ(x)χ(y)(x, y)2

This fits with the central extension of Galab by G̃∨

m defined by the cocycle you use. But why

the second twist?

1



Best,

P. Deligne

P.S. Here is another perlexity. I don’t know whether they are related.

If F is a non archimedean local field with residue field k, the central extension of F ∗ by

k∗ given by the tame symbol, viewed as a cocycle, has a natural “square root” for which the

tame symbol is the commutator. Of course, as (x, x) is non trivial, a grain of salt is needed: it

is a central extension by the commutative Picard category of mod 2 graded lines over k, with

Koszul’s rule for the commutativity of ⊗. If M is a module of finite length over the valuation

ring O of F , one has a det(M) which is a mod 2 graded line over k, with det(M) ∼ det(M ′)⊗

det(M ′′) for M extension of M ′′ by M ′. Up to unique isomorphism, the central extension

depends on the choice of a one-dimensional vector space V over F . If L is any lattice in V , the

mod 2 graded line attached to f ∈ F ∗ is [L : fL] = det(L/fL) if fL ⊂ L. It is independent

of L: for L′′ ⊂ L′, det(L//L′′) det(L′′/L′′) det(L′′/fL′′) ∼ det(L′/fL′) det(fL′/fL′′) and by

f : L′/L′′ ∼→ fL′/fL′′, one gets the independence.

A similar story holds for GL(n) (by restriction to SL(n) one gets the usual central ex-

tension), and there is a global counterpart in the function fields case.

I don’t know whether such extensions have automorphic meaning, or if they give rise to

a “dual”.
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October 26, 2011

Dear Weissman,

You seem to take for granted that the L-group should not depend on the faithful character

ε : µn → Ql used. Is that reasonable? If we don’t take it for granted, one should replace Z

by the cyclotomic ring Λ generated by a generator ζ ∈ µn(F ) [= the quotient of the group

algebra Z[µn(F )] where cyclotomicn(ζ) = 0]. In the case of a split torus, one can then do

something very naive but in which I have more confidence than in your construction.

Fix T split over F , an extension of T by K2, n, such that all nth root of 1 are in F , and

consider the resulting central extension E of T (F ) by µn(F ). Let Q be the corresponding

quadratic form on the cocharacter group Y , B the associated bilinear form, and

Ỹ =
{
ỹ ∈ Y | B

n
(ỹ, y) ∈ Z for all y ∈ Y

}
.

We have the torus T̃ := Ỹ ⊗Gm over F , and the center of E is the inverse image by E → T (F )

of

Im(T̃ (F ) → T (F ))

We care about irreducible Ql representations of E for which µn(F ) acts by ε : µn(F ) ↪→

Q
∗

l . This is the same as a character of the center Z of E, inducing ε on µn(F ), and such

a character induces a character of the pull-back Ẽ of E by T̃ (F ) → T (F ): a commutative

extension

µn → Ẽ → T̃ (F ).

As T̃ (F ) = Ỹ ⊗ F ∗, if X̃ is the dual of Ỹ , the data of such an extension is equivalent to

the data of an extension Ẽ1 of E∗ by µn ⊗ X̃. On Λ, we have µn(F ) = µn(Λ) ↪→ Gm, and

pushing we get over Λ an extension TL

Gm ⊗ X̃ → TL → F ∗

where F ∗ can now be thought of as a Weil group.

A character Ẽ → Q
∗

l , extending ε, is the same thing as a splitting of the extension

Q
∗

l → ∗ → T̃ (F )

deduced from Ẽ by pushing by ε : µn(F ) → Q
∗

l . This is the same as a splitting of

TL(Ql) → F ∗,

where one uses ε : Λ → Ql to give meaning to TL(Ql).

1



As this construciton is very naive, it has the virtue that automorphisms of the extension

of T by K∗

2 we started with act on TL, respecting the projection to F ∗, and respecting the

map

(ε-genuine irreducible Ql-representations of E) →

(Langlands parameter W ( /F ) → TL)

I hope something equally naive can be done globally. What I would like to see next is

how to handle the cases of SL(2), n = 2 or 3, locally and globally. What is known?

Best,

P. Deligne
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Dept. of Mathematics
UC Santa Cruz

November 21, 2011

Dear Deligne

First, I absolutely agree that the L-group should be defined over the cyclotomic
ring ⇤ = Z[⇣] as you suggest.

Regarding the construction you mention for split tori – the “something very
näıve” – I am a bit embarassed that I never tried this. Of course, I’m aware
of the natural isomorphism of Ext groups, Ext(A ⌦ Y,B) ⇠= Ext(A,B ⌦ X),
when A,B are Z-modules and X,Y are finite-rank free Z-modules in perfect
duality. But I had never thought of the corresponding functor, from the category
Ext(A⌦ Y,B) to the category Ext(A,B⌦X). In our context, this functor must
be given by the following construction (what else could it be?):

Begin with the extension of Z-modules (recall that T̃ (F ) = Ỹ ⌦ F⇥)

µn ! Ẽ ! Ỹ ⌦ F⇥. (1)

Tensor with X̃ = Hom(Ỹ,Z):

µn ⌦ X̃ ! Ẽ ⌦ X̃ ! X̃ ⌦ Ỹ ⌦ F⇥. (2)

Pull back via the canonical homomorphism ◆ : Z ! EndZ(Ỹ ) = X̃ ⌦ Ỹ :

µn ⌦ X̃ ! ◆⇤(Ẽ ⌦ X̃) ! F⇥. (3)

Now push forward as you say, via ✏ : µn(F ) ! Q̄⇥
` :

T̃_ ! LT̃ ! F⇥ (4)

where T̃_ = Q̄⇥
` ⌦ X̃.

I think I’m merely restating what you wrote in your previous letter, but it helped
me to write out a few details I hadn’t understood.

Now let me compare this to my previous perspective using messier cocycles.
Suppose that the extension (1) is incarnated by a (bimultiplicative) cocycle of
the form

c(1)(y1 ⌦ f1, y2 ⌦ f2) = (f1, f2)
C(y1,y2)
n ,

where C : Y ⌦ Y ! Z is a Z-bilinear map such that C(y, y) = Q(y), and (·, ·)n
denotes the appropriate Hilbert symbol. Recall that Q(y1+y2) = Q(y1)+Q(y2),
mod n, for all y1, y2 2 Ỹ .



To go further, I’ll commit a sin and choose a Z-basis x1, . . . , xr of X̃ and dual
basis y1, . . . , yr of Ỹ . Then the second extension is incarnated by a cocycle,
Z-bilinear in X̃, satisfying

c(2)(xi ⌦ y1 ⌦ f1, xj ⌦ y2 ⌦ f2) = �ijxi(f1, f2)
C(y1,y2)
n .

The homomorphism ◆ sends 1 to
P

i xi ⌦ yi. Hence the third central extension
is incarnated by a cocycle,

c(3)(f1, f2) = c(3)

0

@
X

i

xi ⌦ yi ⌦ f1,
X

j

xj ⌦ yj ⌦ f2

1

A =
Y

i

(f1, f2)
C(yi,yi)
n ⌦ xi.

So indeed, viewing this cocycle as having values in µn ⌦ X̃ = Hom(Ỹ, µn), it is
given by

c(3)(f1, f2)(y) = (f1, f2)
Q(y)
n .

This agrees with the “first twist” of my paper (which I am thankful for).

This implies that the L-group LT̃ is isomorphic to the twisted product F⇥ ⇥c

T̃_ – the direct product of underlying sets, with multiplication twisted by the

cocycle c(f1, f2)(y) = (f1, f2)
Q(y)
n . The twisted product is uniquely determined

by Q, but the isomorphism is not uniquely determined by Q.

This non-uniqueness of isomorphism explains why something like a second twist
is necessary. I think it would be incorrect to say that the L-group equals F⇥⇥c

T̃_, since it is noncanonically isomorphic. Of course, your construction avoids
cocycles entirely, but maybe I can say why a second twist is natural. I think this
is explained near the end of SGA 7, Exposé VII. From that source, I learned
that the extension µn ! Ẽ ! Ỹ ⌦F⇥ can be viewed as a biextension of (Ỹ, F⇥)
by µn. Using the resolutions L•(Ỹ ) and L•(F⇥) of the Z-modules Ỹ and F⇥,
described in loc. cit., such a biextension, trivialized over L0(Ỹ ) ⌦ L0(F⇥) =
Z[Ỹ ]⌦ Z[F⇥], gives a pair of functions

⌧ : F⇥ ⇥ F⇥ ⇥ Ỹ ! µn, � : F⇥ ⇥ Ỹ ⇥ Ỹ ! µn.

satisfying “cinq conditions de compatibilité”. I think that ⌧ captures the co-
cycle c(3) described above. But I think to capture the biextension structure
completely, the function � (capturing my “second twist”) is also required.

2



Now let me try to interpret your construction from the Tannakian perspective.
Begin again with the extension of Z-modules

µn ! Ẽ ! Ỹ ⌦ F⇥.

For each y 2 Ỹ , one may pull back to give an extension

µn ! Ẽy ! F⇥.

This defines a homomorphism of Picard categories

Ỹ ! Ext(F⇥, µn), y 7! (µn ! Ẽy ! F⇥).

The Hilbert symbol Hilbn gives an object F̃⇥ of Ext(F⇥, µn);

µn ! F̃⇥ ! F⇥,

In the Picard category Ext(F⇥, µn), n · F̃⇥ = 0 and by construction, the exten-
sion Ẽy is isomorphic to Q(y) · F̃⇥. Choose such an isomorphism s(y) : Ẽy !
Q(y) · F̃⇥ for each y 2 Ỹ . The set of such isomorphisms is a Hom(F⇥, µn)-
torsor. There is an associated 2-cocycle � : Ỹ ⇥ Ỹ ! Hom(F⇥, µn), making
the following diagram commute

Ey1 + Ey2

s(y1)+s(y2) //

✏✏

(Q(y1) · F̃⇥) + (Q(y2) · F̃⇥)

�(y1,y2)

✏✏

Ey1+y2

s(y1+y2) // Q(y1 + y2) · F̃⇥.

in the Picard category Ext(F⇥, µn). I believe that the 2-cocycle � is the “second
twist” mentioned before. Of course, since Y is a free Z-module, this cocycle is
a coboundary; still there is ambiguity up to Hom(Ỹ ⌦ F⇥, µn) in the choice of
1-chain whose coboundary is the 2-cocycle.

As the “abelian model” for metaplectic Langlands parameters, let Rep(F̃⇥, Q̄`)
denote the tensor category of Q̄`-representations of F̃⇥. This tensor category
is naturally graded by Hom(µn, Q̄⇥

` ), which is isomorphic to Z/nZ once we
choose a faithful character ✏ as before. Let Repm(F̃⇥, Q̄`) be the mth graded
piece (those representations which restrict to ✏m on F̃⇥). Every continuous
homomorphism � : F⇥ ! Q̄⇥

` pulls back to given an object �0 of Rep0(F̃
⇥, Q̄`).

For each y 2 Ỹ , the isomorphism s gives a homomorphism y �s�1 : Q(y) · F̃⇥ !
Ẽ, whence a pullback functor

p(y) = (y � s�1)⇤ : Rep(Ẽ, Q̄`) ! Rep(F̃⇥, Q̄`).

This, I believe, gives a parameterization of the ✏-genuine charactersHom(Ẽ, Q̄⇥
` )

by “twisted tensor functors” from Rep(T_, Q̄`) to Rep(F̃⇥, Q̄`), as I described
in the previous letter.
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For the following reason that I am interested in this cocycle perspective, even
though it is not as elegant as your “näıve” approach. Consider an elliptic curve
C defined over an algebraic extension Q. Suppose that C is isogenous to each of
its Galois conjugates gC. These are called “Q-curves” in the literature, and are
studied by Gross, Ribet, Elkies, and many others. Suppose moreover that C
does not have complex multiplication. Then by a theorem of Elkies (generalized
to Hilbert-Blumenthal abelian varieties by Ribet), it happens that C is isogenous
to an elliptic curve defined over a (2, . . . , 2)-extension K/Q – a compositum of
quadratic extensions of Q.

Fixing this extension K/Q, and a system of isogenies �(g) : C ! gC for all
g 2 Gal(K/Q). Let T`C denote the Tate module and V` = T`C ⌦Z` Q̄` the
resulting Q̄`-sheaf on Ket. Then V`

⇠= gV` for each g 2 Gal(K/Q), via the
isogenies �(g).

There is a central extension given by local Hilbert symbols:

1 ! µ2 ! Â⇥/Q⇥ ! A⇥/Q⇥ ! 1.

Pulling back via the isomorphism W ab
Q ! A⇥/Q⇥ of global class field theory

yields a central extension

1 ! µ2 ! W̃Q ! WQ ! 1.

This central extension splits canonically over the compositum of all quadratic
extensions of Q.

Question: Does the Q-curve C (the curve endowed with the system of isogenies)
determine a representation of W̃Q on V`?

Related question: To the data of C and the system of isogenies, can one associate
a modular form of half-integral weight in a natural way (without any further
choices)?

By modularity of Q-curves, the curve C occurs as a Q̄-simple factor of J1(N)
for some N ; thus there is an associated weight-two newform on �1(N). By the
classical Shimura correspondence, there corresponds a modular form of weight
3/2. But this process involves many choices. Can one instead pass directly from
a Q-curve to a “metaplectic Langlands parameter”, to a half-integral weight
modular form?

Sincerely,

Marty Weissman
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Dept. of Mathematics
UC Santa Cruz

June 2, 2012

Dear Professor Deligne

I am thinking more again about metaplectic groups again. I thought that before
I began a new paper, I’d send a note regarding some new ideas. Your previous
comments have been most helpful to me, and perhaps this new construction is
more natural than any I have written previously.

Choose a local or global field k; when k is global, write A for its adele ring.
Write J

k

for k⇥ if k is local, and for A⇥ if k is global. Write C
k

for k⇥ if k is
local, and for A⇥/k⇥ when k is global. Fix a separable algebraic closure ksep of
k, and let � = Gal(ksep/k) be the absolute Galois group.

Fix a connected reductive group G over k, and a central extension

K2 ! G

0 ! G

as in your paper with Brylinski. Fix an integer n � 1 such that #µ
n

(k) = n.
Let ⌦ be a ring, and

✏ : µ
n

(k) ! ⌦⇥

be an injective group homomorphism.

When k is local, k 6⇠= C, and u, v 2 k⇥, define

(u, v)
✏

= ✏(Hilb
n

(u, v))

to be the result of the nth-order Hilbert symbol followed by ✏. When k = C,
define (u, v)

✏

= 1. When k is global, and u, v 2 A⇥, define (u, v)
✏

to be the
product of the local Hilbert symbols followed by ✏. Thus when k is local or
global, we get a bimultipliative function

(•, •)
✏

: J
k

⇥ J
k

! µ
n

(⌦).

From this, I hope to construct an extension of group schemes over ⌦ (viewing
� as a constant group scheme over ⌦):

˜

G

_
! L

˜

G ! �.

Consider the following two twists – one is familiar from my previous work, and
one is a better way of thinking of my “second twist”, I hope. Hereafter let us
suppose G is split over k. I hope this assumption can be removed someday
soon!



First twist

Let T be a k-split maximal torus of G, X its character lattice and Y its cochar-
acter lattice. Let � and �_ be the resulting roots and coroots. Let Q : Y ! Z
be the quadratic form associated to the central extension G

0, and

Ỹ = {y 2 Y : B
Q

(y, y0) 2 nZ for all y0 2 Y },

X̃ = {x 2 X ⌦Z Q : hx, yi 2 Z for all y 2 Ỹ }.

For each � 2 �, define

n
�

=
n

GCD(n,Q(�_))
.

Let �̃_ = n
�

�_ and let �̃ = n�1
�

�. Then �̃_ 2 Ỹ and �̃ 2 X̃, and these form a
root system

(Ỹ, �̃_, X̃, �̃),

Let Ỹ
sc

be the subgroup of Ỹ generated by �̃_.

Let
⇣
˜

G

_
, ˜B

_
, ˜T

_
, {X

�̃

_}
⌘
be a pinned connected reductive group over ⌦ with

root datum (Ỹ, �̃_, X̃, �̃). Let ˜

Z

_
= Spec(⌦[Ỹ/Ỹ

sc

]) be the center of ˜

G

_
.

The quadratic form Q mod n : Y ! Z/nZ restricts to Ỹ , where it factors
through Ỹ/Ỹ

sc

:
Q mod n : Ỹ/Ỹ

sc

! mZ/nZ,
where m = n if n is odd and m = n/2 if n is even.

Define a function

z : J
k

/n⇥ J
k

/n ! ˜

Z

_
(⌦) = Hom(Ỹ/Ỹ

sc

,⌦⇥)

by

[z(u, v)](y) = (u, v)Q(y) mod n

✏

for all u, v 2 J
k

and y 2 Ỹ/Ỹ
sc

. Note z(u, v) = z(v, u).

This function z is a two-cocycle valued in the center of ˜

G

_
, giving an extension

of group schemes over ⌦:
˜

Z

_
! q

˜

Z

_
! J

k

/n.

When k is local, J
k

= C
k

= k⇥. When k is global, we have (u, v)
✏

= 1 for
all u, v 2 k⇥. This gives a canonical splitting of the above extension over
k⇥/(k⇥ \ Jn

k

), and we obtain a central extension

˜

Z

_
! 1

˜

Z

_
! C

k

/n.

This extension 1
˜

Z

_
is what we call the first twist. Pushing it forward gives an

extension by ˜

G

_
.

˜

G

_
! 1

˜

G

_
! C

k

/n.

2



Second twist

Associated to the central extension G

0 of G by K2, there is a central extension

k⇥ ! E ! Y,

Pulling back to Ỹ ⇢ Y , and pushing forward to k⇥/n, we obtain a commutative

central extension
k⇥/n ! Ẽ ! Ỹ.

Commutativity follows from (3.11.1) of your paper with Brylinski; if n is odd,
then �1 = 1 in k⇥/n; if n is even, then the bilinear form B(y, y0) is even for
y, y0 2 Ỹ .

Also associated to the central extension G

0 of G by K2, by Theorem 6.2 of loc.
cit., is a map f : E

sc

! E (which is called � in loc. cit.) making the following
diagram commute:

k⇥ //

=

✏✏

E
sc

f

✏✏

// Y
sc

◆

✏✏
k⇥ // E // Y

,

where Y
sc

is the subgroup of Y generated by �_, and E
sc

is the canonical central
extension discussed in loc. cit.. Push this diagram forward using k⇥ ! k⇥/n,
and pull it back to Ỹ and Ỹ

sc

(the subgroup generated by �̃_), to obtain

k⇥/n //

=

✏✏

Ẽ
sc

f

✏✏

// Ỹ
sc

◆

✏✏
s

~~
k⇥/n // Ẽ // Ỹ

Claim: The top row k⇥/n ! Ẽ
sc

! Ỹ
sc

splits canonically.

We delay the proof of this claim to the end of this letter, focusing on the
construction for now. Using the splitting (giving the arrow s in the above
diagram), we get an extension of abelian groups

k⇥/n ! Ẽ/s(Ỹ
sc

) ! Ỹ/Ỹ
sc

. (1)

Define a map k⇥/n ! Hom(C
k

/n,⌦⇥) by

u 7! (v 7! (u, v)
✏

).

Then, recalling that ˜

Z

_
= Spec(⌦[Ỹ/Ỹ

sc

]), the extension (1) gives another ex-
tension of group schemes over ⌦:

˜

Z

_
! 2

˜

Z

_
! C

k

/n.
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Now we have constructed two extensions 1
˜

Z

_
and 2

˜

Z

_
of C

k

/n by ˜

Z

_
. Define

L

˜

Z

_
as the Baer sum

L

˜

Z

_
= 1

˜

Z

_
⇥Z̃

_ 2
˜

Z

_
,

giving an extension
˜

Z

_
! L

˜

Z

_
! C

k

/n.

Push this forward, using ˜

Z

_
! ˜

G

_
to obtain a contestant for an L-group:

˜

G

_
! L

˜

G

_
! C

k

/n.

I believe that this agrees with my previous construction, but avoids the annoy-
ances with cocycles everywhere. Since your constructions (of the quadratic form
Q, the extension E, the function f) are functorial, I guess the Galois action can
be traced through. But I cannot say much right now about non-split groups,
though perhaps the tame case (e.g. groups split over an unramified extension,
and covers with n coprime to the residue characteristic) can be handled without
much trouble. I may try to work out some examples with nonsplit tori and
nontame symbols to gather supporting evidence.

Thank you as always for any advice you can provide.

Sincerely,

Marty Weissman

Proof of claim: Consider any coroot �̃_ = n
�

�_ 2 �̃_. For any e
�

, e��

,
and n

�

in Tits trijection, we get an element [e
�

] 2 E
sc

projecting to �_ 2 Z�_.
This gives an element

⇣
[e

�

]n� 2 Ẽ
sc

⌘
7!

⇣
�̃_ 2 Ỹ

sc

⌘
.

Replacing e
�

by ae
�

for a 2 k⇥, we have (by 11.1.9 of loc. cit.):

[ae
�

]n� = a�n�Q(�_) · [e
�

]n� = [e
�

]n� ,
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since n
�

Q(�_) 2 nZ (by definition of n
�

). We have found a canonical element

[ẽ
�

] = [e
�

]n� 2 Ẽ
sc

projecting onto �_.

To achieve a splitting of the extension k⇥/n ! Ẽ
sc

! Ỹ
sc

, we must go a bit
further. We utilize the long-root subsystem of (Ỹ, �̃_, X̃, �̃) in what follows.

Let �̃
long

be the set of long roots in �̃; if �̃ is irreducible, the meaning is clear,
considering all roots to be long if they all have the same length; now just take
the union over the irreducible summands of �̃). Let �̃_

short

be the set of short

coroots, so if ↵̃ 2 �̃
long

then ↵̃_ 2 �_
short

. Thus �̃_
short

generates Ỹ
sc

. Let W
long

be the Weyl group of the long root subsystem, generated by reflections in long
roots.

From Lemma 11.5 of loc. cit. (applied to the long root subsystem) we find that
Ỹ
sc

admits a presentation with generators �̃_
short

and with relations

s
↵̃

(�̃)_ = �̃_ � ↵̃(�̃_)↵̃_,

for every ↵̃, �̃ 2 �̃
long

. Choose ↵̃, �̃ 2 �̃
long

, and let �̃ = s
↵̃

(�̃). To give a

splitting of Ẽ
sc

over Ỹ
sc

, it now su�ces to prove the relation

[ẽ
�

] = [ẽ
�

] · [ẽ
↵

]�↵̃(�̃_).

Since n
�

= n
�

as they are in the same W -orbit and Q is W -invariant,

[ẽ
�

] = [e
�

]n� = [int(n
↵

)e
�

]n� ,

Since n
↵

↵̃(�̃_) = ↵(�̃_) = n
�

· ↵(�_),

[ẽ
�

] = [e
�

]n� , [ẽ
↵

]�↵̃(�̃_) = [e
↵

]�n�↵(�
_),

Thus it su�ces to prove that

[int(n
↵

)e
�

]n� = [e
�

]n� · [e
↵

]�n�↵(�
_).

From 11.6.1 of loc. cit., it now su�ces to prove that

(�1)✏(�↵(�_))·Q(↵_)·n� = 1 in k⇥/n

where ✏(N) = N(N + 1)/2.

If n is odd, �1 = 1 in k⇥/n, so there is nothing to check, so assume n is even.
If n

�

is even, the result holds, so we may assume n
�

is odd which implies Q(�_)
is even. If Q(↵_) is even, the result holds, so we may assume Q(↵_) is odd and
n
↵

is even. If ↵(�_) = 0, the result holds, so we may assume ↵(�_) 6= 0.

The remaining case is when ↵_ and �_ span a root system of type B2, with �_

long and ↵_ short. But in this case, �̃_ must be short and ↵̃_ must be long.
This contradicts the assumption that both ↵̃ and �̃ were long.
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July 31, 2012

Dear Weissman,

This is a late answer to your letter of June 2.

I find the story much cleaner than before. I expect you care only about Ω of char. 0 (=

a Q-algebra). Otherwise, I think you should assume that n is invertible in Ω (injectivity of

ε does not imply it). If you don’t assume Spec(Ω) connected, should you not assume that ε

is locally an injective morphism?

I understand better the definition of the first twist when writing

Ỹ =

{
y ∈ Y :

1

n
B(y, y′) ∈ Z for all y′

∈ Y

}
,

nφ = denominator
1

n
Q(φ∨)

and telling that 1
n

Q mod Z is an homomorphism from Y/Ysc to 1
2 Z/Z, trivial for n odd, while

for n even, if f is twice this homomorphism, with values in Z/2Z, the cocycle is (u, v)f(y)
2 .

For the second twist, after (1), you don’t just use that you have a map k∗/n → Hom(Ck/n, Ω∗),

but you use that it is a perfect Pontrjagin duality (hence my request that n be invertible in

Ω).

Best,

P. Deligne



August 1, 2012

Dear Weissman,

I am trying to understand what you do for a split torus over k local. Take a central

extension of Y ⊗ Gm by K2, and n, ε : µn(k) ∼

−→µn(Ω) as you do. We can pull it back to

Ỹ ⊗ Gm, and get
µn −−−→ E −−−→ Y ⊗ k∗

∥∥∥
#⏐⏐

#⏐⏐

µn −−−→ Ẽ −−−→ Ỹ ⊗ k∗,

(1)

where the image of Ẽ in E is the center of E. From Ẽ, we get by pushing by ε a (commutative)

extension

Ω∗
−→ E1 −→ Ỹ ⊗ k∗. (2)

Genuine (rel. ε) irreducible representations of E give rise to splittings of this extension. This

extension is “equivalent” to another one

Ỹ ∨
⊗ Ω∗

−→ E2 −→ k∗ : (3)

take a basis of Ỹ to see (2) as dim(Ỹ ) extensions of k∗ by Ω∗, and similarly with (3) and check

independence of basis, or more intrinsically, take Ỹ ∨ ⊗ (2) and a pull back by Z → Ỹ ∨ ⊗ Ỹ .

Splittings of (2) correspond one to one to splittings of (3).

Do I understand correctly that, in the split torus case, what you do is to give a description

of the central extension (3), using only the data I use to describe an extension of Y ⊗ Gm

by K2 (and n, and Hilbert symbol) ?

Best,

P. Deligne



Dept. of Mathematics
UC Santa Cruz

August 20, 2012

Dear Professor Deligne

I think it is an interesting exercise to relate the canonical extension that you
described (as E2 in the letter from August 1) to the extension I described with
two twists. Indeed, they are naturally isomorphic. Here are the details.

Let T be a split algebraic torus over a local field k. Suppose µn = µn(k) has n
elements. Let ⌦ be an integral domain , with n invertible in ⌦, and ✏ : µn ! ⌦⇥

an injective homomorphism. Let X = Hom(T,Gm) and Y = Hom(Gm,T). We
write ◆ for the canonical map ◆ : Z ,! X ⌦ Y .

Consider a central extension of T by K2, in the sense of your paper with Brylin-
ski (hereafter cited as [BD]):

K2 ! T

0
! T.

Let Q : Y ! Z be the associated quadratic form, and BQ the bilinear form
associated to Q. Let us also assume that

BQ(y1, y2) 2 nZ, for all y1, y2 2 Y.

This avoids the extra step of pulling back to what we called Ỹ in previous
correspondence.

Let q = Q mod n : Y ! Z/nZ. Since q(y1 + y2) = q(y1) + q(y2), we may view
q as an element of X/n.

Let T = Y ⌦ k⇥ = T(k). The central extension of T by K2 yields a central
extension

µn ! T̃ ! Y ⌦ k⇥.

You have suggested a natural way to construct an L-group. Tensor with X to
obtain

X ⌦ µn ! X ⌦ T̃ ! X ⌦ Y ⌦ k⇥.

Pull back via ◆ : Z ! X ⌦ Y to obtain an extension I’ll call Ecan.

X ⌦ µn ! Ecan ! k⇥.

Pushing forward via ✏ : µn ! ⌦⇥ yields a contestant L-group (over ⌦) of T̃ .

Now, I wish to show that the extension Ecan is naturally isomorphic to the Baer
sum E1 + E2, where E1 and E2 are central extensions described below.



The description of E1 is straightforward; let E1 be the trivial (X ⌦ µn)-torsor
on k⇥, endowed with the multiplicative structure from the cocycle:

c1(u, v) = q ⌦ (u, v)n, for all u, v 2 k⇥.

For u 2 k⇥, write s1(u) for its lift in the trivial torsor E1.

The description of E2 is not as easy. The extension K2 ! T

0
! T yields, by

taking k((t))-points, pulling back via Y ! T(k((t))), y 7! y(t), and pushing
forward via the tame symbol (mod n) @ : K2(k((t))) ! k⇥/n, an extension

k⇥/n ! D ! Y.

(In [BD, 3.10.4], D would be called E , except that we consider k⇥/n instead

of k⇥.) Tensor with k⇥ (and note flatness of the Z-module Y ) to obtain an
extension

k⇥/n ⌦ k⇥ ! D ⌦ k⇥ ! Y ⌦ k⇥.

Push forward via the Hilbert symbol to obtain an extension I’ll call T̂ :

µn ! T̂ ! Y ⌦ k⇥.

Tensor with X:
X ⌦ µn ! X ⌦ T̂ ! X ⌦ Y ⌦ k⇥.

Pull back via ◆ : Z ! X ⌦ Y , to obtain:

X ⌦ µn ! E2 ! k⇥.

The extensions E1 and E2 restate the two twists I discussed in a previous letter
(just push forward E1 and E2 via ✏ : X ⌦ µn ,! X ⌦ ⌦⇥ = T

_(⌦)).

I think it is important to note that E1 and E2 are defined directly from the
invariants Q and k⇥ ! D ! Y , defined in [BD].

Claim: There is a natural isomorphism from Ecan to the Baer sum E1 + E2.

Proof: It su�ces, by [BD, §3], to assume that T

0 is a trivial K2-torsor over
T, with multiplicative structure given by the cocycle image of C 2 X ⌦ X =
Hom(Y ⌦ Y,Z). Note C(y, y) = Q(y) for all y 2 Y .

For each y 2 Y and u 2 k⇥, the trivialization of the K2-torsor T

0 gives an
element ỹ(u) 2 T̃ lifting y(u) 2 T . We write the abelian group structure on
T̃ additively, since it will be most convenient later. From [BD], we deduce two
identities:

1. ỹ1(u) + ỹ2(u) = (u, u)C(y1,y2)
n + ŷ1 + y2(u),

2. ỹ(u1) + ỹ(u2) = (u1, u2)
Q(y)
n + ỹ(u1 · u2).
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Similarly the trivialization of the K2-torsor T trivializes the k⇥/n-torsor D over
Y ; for each y 2 Y , write ŷ for the resulting lift inD. The abelian group structure
on D satisfies:

ŷ1 + ŷ2 = (�1)C(y1,y2) + \y1 + y2.

Of course, the extension k⇥/n ! D ! Y splits – but the splitting is not canonical.

Now we use an (ordered) basis (y1, . . . , yr) of Y to trivialize the torsors Ecan and
E2 (noting that the torsor E1 is trivial by construction, without any choices).
Let (x1, . . . , xr) be the Z-basis of X dual to (y1, . . . , yr).

Recall that Ecan fits into a pullback diagram, with injective vertical arrows:

X ⌦ µn
//

=

✏✏

Ecan

✏✏

// k⇥

Z,!X⌦Y

✏✏
X ⌦ µn

// X ⌦ T̃ // X ⌦ Y ⌦ k⇥.

In this way, we view Ecan as a subgroup of X ⌦ T̃ . For any element u 2 k⇥, a
lift to Ecan is given by

scan(u) =
X

i

xi ⌦ ỹi(u).

With this trivialization, the multiplicative structure on the (X⌦µn)-torsor Ecan

is given by the cocycle

ccan(u, v) =
X

i

xi ⌦ (u, v)Q(yi)
n = q ⌦ (u, v)n 2 X ⌦ µn.

Since ccan equals c1, this gives an isomorphism from Ecan to E1. But this
isomorphism depends on the choice of basis (y1, . . . , yn).

Something similar is possible with the extension E2. Begin with the extension

k⇥/n ! D ! Y,

with the lifts y 7! ŷ 2 D. Tensor with k⇥ to obtain the extension

k⇥/n ⌦ k⇥ ! D ⌦ k⇥ ! Y ⌦ k⇥.

For each y 2 Y and u 2 k⇥, we have a lift ŷ ⌦ u 2 D of y ⌦ u 2 Y ⌦ k⇥. Push
forward via the Hilbert symbol to get

µn ! T̂ ! Y ⌦ k⇥.

For ŷ ⌦ u 2 D ⌦ k⇥, write ŷ(u) for its image in T̂ . Now tensor with X and
pullback to obtain

X ⌦ µn
//

=

✏✏

E2

✏✏

// k⇥

Z,!X⌦Y

✏✏
X ⌦ µn

// X ⌦ T̂ // X ⌦ Y ⌦ k⇥.
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For any element u 2 k⇥, a lift to E2 is given by

s2(u) =
X

i

xi ⌦ ŷi(u).

With this trivialization, the multiplicative structure on the (X ⌦ µn)-torsor E2

is given by the zero cocycle
c2(u, v) = 0.

In other words, the section s2 splits the extension:

X ⌦ µ // E2
// k⇥

s2
ss

Now, since ccan(u, v) = c1(u, v) and c2(u, v) = 0, there is a unique isomorphism
of extensions of k⇥ by X ⌦ µn

f : Ecan ! E1 + E2,

such that f (scan(u)) is the image of (s1(u), s2(u)) in the Baer sum. We write
this out as

f

 
X

i

xi ⌦ ỹi(u)

!
=

"
s1(u),

X

i

xi ⌦ ŷi(u)

#
.

The main claim now follows if we can show that this isomorphism f does not
depend on the choice of basis. So let (y01, . . . , y

0
r) be another basis of Y , and

(x0
1, . . . , x

0
r) the dual basis of X. This defines another isomorphism f 0 : Ecan !

E1 + E2, satisfying

f 0

 
X

i

x0
i ⌦ ỹ0i(u)

!
=

"
s1(u),

X

i

x0
i ⌦ ŷ0i(u)

#
.

Let ↵ = (↵k
i ) be the change of basis matrix, � = (�`

j) its adjoint, i.e.,

yi =
X

k

↵k
i y

0
k, xj =

X

`

�`
jx

0
`.

Since we have chosen bases of X and Y dual to each other,

X

k

↵m
k �n

k =
X

j

↵j
m�j

n =

(
1 if m = n,

0 otherwise.

We can now use the change of basis matrix and identities in T̃ and T̂ to express
ỹi(u) and ŷi(u) in terms of the ỹ0j(u) and ŷ0j(u).
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An explicit computation yields

ŷi = (�1)Wi +
X

k

↵k
i ŷ

0
k, where the exponent is

Wi =
X

k

✓
↵k
i

2

◆
Q(y0k) +

X

1m<nr

↵m
i ↵n

i C(y0m, y0n).

Since ŷi(u) is the image of ŷi ⌦ u under the Hilbert symbol, we find that

ŷi(u) = (u,�1)Wi
n +

X

k

↵k
i ŷ

0
k(u) 2 T̂ .

Hence
X

i

xi ⌦ ŷi(u) =
X

i

X

k

xi ⌦ ↵k
i ŷ

0
k(u) +

X

i

xi ⌦ (u,�1)Wi
n

=
X

i

X

k,`

↵k
i �

`
i (x

0
` ⌦ ŷ0k(u)) +

X

i

xi ⌦ (u,�1)Wi
n

=
X

k,`

 
X

i

↵k
i �

`
i

!
(x0

` ⌦ ŷ0k(u)) +
X

i

xi ⌦ (u,�1)Wi
n

=
X

`

x0
` ⌦ ŷ0`(u) +

X

i

xi ⌦ (u,�1)Wi
n .

A similar computation yields (with the same Wi as before)

ỹi(u) = (u, u)Wi
n +

X

k

↵k
i ỹ

0
k(u) 2 T̃ .

From this it follows that
X

i

xi ⌦ ỹi(u) =
X

`

x0
` ⌦ ỹ0`(u) +

X

i

xi ⌦ (u, u)Wi
n .
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Therefore, recalling that f 0 is a homomorphism of extensions of k⇥ by X ⌦ µ,

f 0

 
X

i

xi ⌦ ỹi(u)

!
= f 0

 
X

`

x0
` ⌦ ỹ0`(u) +

X

i

xi ⌦ (u, u)Wi
n

!

=
X

i

xi ⌦ (u, u)Wi
n +

"
s1(u),

X

`

x0
` ⌦ ŷ0`(u)

#

=
X

i

xi ⌦ (u, u)Wi
n +

"
s1(u),

X

i

xi ⌦ ŷi(u)�
X

i

xi ⌦ (u,�1)Wi
n

#

=

"
s1(u),

X

i

xi ⌦ ŷi(u)

#
( since (u, u)n = (u,�1)n)

= f

 
X

i

xi ⌦ ỹi(u)

!
.

Hence the isomorphisms f and f 0 are equal. We have identified an isomorphism
from your canonical extension Ecan to the Baer sum E1+E2, that is independent
of basis.

⇤
I would be interested if there is a more direct (basis-free) way of defining the
isomorphism Ecan ! E1 + E2, to avoid the computations above. Also, the
exponents Wi are interesting to me – do they have a natural interpretation?
For now, I am happy that the double-twist construction of mine agrees with the
much simpler construction you’ve mentioned for split tori.

Sincerely,

Marty Weissman
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