WHAT IS... G₂? MARTIN H. WEISSMAN MARCH 17, 2009

Octonions

Let *k* be a field, with $char(k) \neq 2$. For example, *k* may be Q or R or C (though the last case is not as interesting). A **Hurwitz algebra** over *k* is a finite-dimensional, *k*-algebra *A* with unit element, together with a quadratic form $N: A \rightarrow k$, such that the associated bilinear form is nondegenerate and:

$$N(xy) = N(x)N(y)$$
, for all $x, y \in A$.

Every Hurwitz algebra¹ over *k* has dimension 1, 2, 4, or 8, as a *k* vector space.

In what follows, we write *k*, *K*, *B*, *C* for Hurwitz algebras of dimensions 1, 2, 4, 8 respectively; *K* is called a **quadratic étale** *k*-algebra, *B* is called a **quaternion algebra** over *k*, and *C* is called a **Cayley** or **octonion** algebra over *k*.

Hurwitz algebras become more pathological as their dimension rises: quadratic étale algebras are commutative and associative. However, quaternion algebras are associative but never commutative. Cayley algebras are neither commutative nor associative. However, Cayley algebras are **alternative**, so that for any two elements $x, y \in C$, the algebra generated by x and y is associative (e.g., (xy)x = x(yx)).

There are exactly two **complete chains** of Hurwitz algebras over the real numbers \mathbb{R} . First is the sequence $\mathbb{R} \subset \mathbb{C} \subset \mathbb{H} \subset \mathbb{O}$, where, \mathbb{C} denotes the complex numbers, \mathbb{H} Hamilton's quaternions, and \mathbb{O} Graves's octonions. ² The other complete chain of Hurwitz algebras over \mathbb{R} is $\mathbb{R} \subset \mathbb{R} \times \mathbb{R} \subset M_2(\mathbb{R}) \subset \mathbb{O}_{spl}$, where $\mathbb{R} \times \mathbb{R}$ denotes the algebra of ordered pairs of real numbers (multiplication entry-wise), $M_2(\mathbb{R})$ denotes the two-by-two matrix algebra, and \mathbb{O}_{spl} denotes the "split octonions", which we discuss next.

For any field *k* (or even a commutative ring!), Zorn's algebra of split octonions over *k* is defined to be the set of all two-by-two "matrices":

$$\omega = \{ \begin{pmatrix} a & \vec{v} \\ \vec{w} & d \end{pmatrix} : a, d \in k, \vec{v}, \vec{w} \in k^3 \},$$

with composition given by the following formula:³

$$\left(\begin{array}{cc}a&\vec{v}\\\vec{w}&d\end{array}\right)\cdot\left(\begin{array}{cc}\alpha&\vec{\phi}\\\vec{\psi}&\delta\end{array}\right)=\left(\begin{array}{cc}a\alpha+\vec{v}\cdot\vec{\psi}&a\vec{\phi}+d\vec{v}-\vec{w}\times\vec{\psi}\\\alpha\vec{w}+d\vec{\psi}+\vec{v}\times\vec{\phi}&d\delta+\vec{w}\cdot\vec{\phi}\end{array}\right).$$

Resulting structures on a Hurwitz algebra *A* include a trace,

$$Tr(a) = N(a+1) - N(a) - N(1),$$

and involution $\bar{a} = Tr(a) - a$. Hurwitz algebras are quadratic; every element *a* satisfies the polynomial

$$a^2 - Tr(a) + N(a) = 0.$$

¹ This was first proven over R by Adolph Hurwitz, in Über die Composition der quadratischen Formen von beliebig vielen Variablen, found in Math. Werke I. For a general field, a proof can be found in Irving Kaplansky, Infinite-dimensional quadratic forms admitting composition, Proc. Amer. Math. Soc. 4, (1953).

Figure 1: A. Hurwitz (1859-1919), conducting, while his daughter plays violin with A. Einstein. Taken from David Rowe's Intelligencer article *Felix Klein, Adolph Hurwitz, and the "Jewish Question" in German academia* (original source, Polya's *Photo Album*).

² A nice historical overview of the quaternions and octonions can be found in the first few pages of Baez's article *The Octonions*, in Bull. A.M.S. Vol. 39, 2001.

Max Zorn, 1906–1993, a student of Artin, most famous probably for "Zorn's Lemma", but also active in algebra and analysis. His work on "octonions" can be found in *Theorie der Alternativen Ringe*, Abh. Math. Sem. Hamburgishcen Univ., vol. 8 (1930).

³ Here, we use the standard dot product, cross product, and scalar multiplication.

Automorphisms and Embeddings

Let us fix a base field k (*char*(k) \neq 2), and a complete chain⁴ of Hurwitz algebras $k \subset K \subset B \subset C$. One may consider the groups of k-linear automorphisms that preserve the algebra structure⁵; this yields groups:

$$Aut(k/k), Aut(K/k), Aut(B/k), Aut(C/k).$$

The group Aut(k/k) is trivial, and the automorphism $Aut(K/k) = \{1, \sigma\}$, where $\sigma(a) = \overline{a}$ for all $a \in K$. The groups Aut(B/k) and Aut(C/k) are more complicated.

Suppose, for example, that $B = M_2(k)$ is the "split quaternion algebra"⁶. If $g \in GL_2(k)$, then define the **inner automorphism** Int[g] by:

$$Int[g](b) = gbg^{-1}$$
, for all $b \in B$

Then, *Int* is a homomorphism from $GL_2(k)$ to Aut(B/k). Furthermore, if $z \in Z(GL_2(k))$ is a scalar matrix, then Int[z] = 1. Conversely, if $g \in GL_2(k)$, and Int[g] = 1, then g commutes with every $b \in B$, and hence $g \in Z(GL_2(k))$. It follows that *Int* descends to a unique injective homomorphism:

Int:
$$PGL_2(k) = GL_2(k)/k^{\times} \hookrightarrow Aut(B/k).$$

Conversely, if $\alpha \in Aut(B/k)$, then α is determined by the resulting linear automorphism α_{\circ} of the trace-zero subspace $B_{\circ} \subset B$. Moreover, α_{\circ} preserves the norm quadratic form N on B_{\circ} , so that Aut(B/k) embeds into $O(B_{\circ}, N)$. In fact, a bit more work⁷ shows that:

$$PGL_2(k) \cong Aut(B/k) \cong SO(B_\circ, N).$$

AUTOMORPHISMS OF CAYLEY ALGEBRAS are more complicated than automorphisms of quaternion algebras. An automorphism α of (for example, the split) Cayley algebra *C* restricts to a linear, norm-preserving, automorphism α_{\circ} of the seven-dimensional trace-zero subspace C_{\circ} . Furthermore, α is determined from α_{\circ} . This provides an embedding $Aut(C/k) \hookrightarrow O(C_{\circ}, N)$.

The resulting group Aut(C/k) is not easy to describe, but has another name:

$$G_{2,C} = Aut(C/k).$$

The answer to the title of this lecture is: G_2 is the automorphism group of a Cayley (a.k.a. octonion algebra); which Cayley algebra and which base field should be made clear.

⁴ It would not be too harmful to consider the chain

$$\mathbb{R} \subset \mathbb{R} \times \mathbb{R} \subset M_2(\mathbb{R}) \subset \mathbb{O}_{spl}$$

⁵ Since every element *a* of a Hurwitz algebra satisfies a quadratic identity $a^2 - Tr(a) + N(a) = 0$, it can be seen that the algebra structure determines the quadratic form *N*, the trace map *Tr*, and hence the involution $\bar{a} = Tr(a) - a$.

⁶ The same methods work for nonsplit quaternion algebras as well; every automorphism of a quaternion algebra is inner, yielding an isomorphism from $B^{\times}/Z(B^{\times})$ to Aut(B/k). Indeed, every quaternion algebra splits over a Galois extension, and so descent applies to prove that \overline{Int} is an isomorphism.

⁷ To show that the image of Aut(B/k) in $O(B_o, N)$ is contained in $SO(B_o, N)$, one must check that no automorphism of *B* acts as a reflection of B_o . A reflection would preserve two orthogonal vectors x, y in B_o , and send a third vector z to its negative. But, a basis of B_o as a *k*-vector space is given by $x, y, (xy - y\bar{x})$, so that the action of an algebra automorphism α on B_o is uniquely determined by its action on x and y. In particular, if α fixes x and y, then α fixes z. This demonstrates that Aut(B/k) injectively maps to $SO(B_o, N)$. For surjectivity, a dimension argument suffices.

Subgroups of Automorphisms

Given a complete chain $k \subset K \subset B \subset C$ of Hurwitz algebras over k, we have considered groups:

$$Aut(k/k), Aut(K/k), Aut(B/k), Aut(C/k),$$

each arguably more interesting than the previous. The only group which is "really new" is Aut(C/k). To "know" the group Aut(C/k), it is most helpful to understand its subgroups⁸. Two subgroups which arise most generally are Aut(C/K) and Aut(C/B): the algebra automorphisms of *C*, which fix every element of *K* or of *B*, respectively.

First, let us consider $\alpha \in Aut(C/K)$; such an automorphism α preserves every element of the *k*-subspace *K*, and preserves the norm and trace, and hence stabilizes the subspace K^{\perp} of elements orthogonal to *K*:

$$K^{\perp} = \{ \omega \in C \colon Tr(\omega \overline{z}) = 0 \text{ for all } z \in K \}.$$

The alternative property⁹ of *C* implies that K^{\perp} is a (left) *K*-module: in particular,

$$\omega \in K^{\perp}, z \in K \Rightarrow z \cdot \omega$$

Now, every element of *C* can be expressed uniquely as a sum $z + \omega$ (or ordered pair (z, ω)), where $z \in K$ and $\omega \in K^{\perp}$. There is a unique Hermitian form¹⁰ $\Phi: K^{\perp} \times K^{\perp} \to K$, such that:

$$proj_K((z,\omega) \cdot (z',\omega')) = (zz' - \Phi(\omega,\omega'))$$

It follows that every automorphism $\alpha \in Aut(C/K)$ preserves this Hermitian form. More precisely, one arrives at an injective homomorphism $Aut(C/K) \hookrightarrow U(K^{\perp}, \Phi)$. The most precise possible result is that, in fact, Aut(C/K) is isomorphic to the group $SU(K^{\perp}, \Phi)$.

A VERY GOOD EXAMPLE of Aut(C/K) is provided by Zorn's split octonions, and the algebra $K = k \times k$ embedded as the diagonal matrices. Then we find that:

$$K^{\perp} = \{ \left(egin{array}{cc} 0 & ec{v} \ ec{w} & 0 \end{array}
ight) \colon ec{v}, ec{w} \in k^3 \}.$$

One can verify that $SU(K^{\perp}, \Phi)$ is isomorphic to $SL_3(k)$. Specifically, if $g \in SL_3(k)$, then the action of g on C is given by:

$$g\left(\begin{array}{cc}a&\vec{v}\\\vec{w}&d\end{array}\right)=\left(\begin{array}{cc}a&g\vec{v}\\tg^{-1}\vec{w}&d\end{array}\right).$$

This yields the long root embedding

$$e_{long}: SL_3(k) \hookrightarrow G_{2,C}.$$

⁸ A good reference for automorphisms of Cayley algebras is Jacobson's Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo 1958

⁹ The nontrivial fact is that if $z, w \in K$, and $\omega \in C$, then $z \cdot (w \cdot \omega) = (z \cdot w) \cdot \omega$. But the alternative property implies that such a triple z, w, ω lie in an associative subalgebra of *C*.

¹⁰ For all
$$z, z' \in K$$
, and $\omega, \omega' \in K^{\perp}$,
 $\Phi(z\omega, z'\omega') = z\overline{z'}\Phi(\omega, \omega').$

Here, we identify K^{\perp} with $k^3 \times k^3$, with K^3 , when $K = k \times k$. Note that "conjugation" in K is given by $\overline{z} = (y, x)$ if z = (x, y). If $\overline{z} = (z_1, z_2, z_3) \in K^3$ and $\overline{w} = (w_1, w_2, w_3) \in K^3$, then the Hermitian form is given by:

 $[\]Phi(\vec{z},\vec{w}) = z_1 \bar{w}_1 + z_2 \bar{w}_2 + z_3 \bar{w}_3.$

Quaternion subalgebras

One may also consider the automorphisms Aut(C/B) fixing every element of the quaternion algebra *B*. Since $K \subset B$, we find that $Aut(C/B) \subset Aut(C/K)$. As in the case of quadratic subalgebras, we may consider the orthogonal complement B^{\perp} of *B* in *C*. There exists an element $\ell \in B^{\perp}$, such that every element of *C* has the form $a + b\ell$, for some $a, b \in B$. Moreover, if $\alpha \in Aut(C/B)$, then it is a theorem that there exists a unique element $u_{\alpha} \in B$ such that $N(u_{\alpha}) = 1$ and

$$\alpha(a+b\ell) = a + (u_{\alpha}b)\ell$$
, for all $a, b \in B$.

This provides an isomorphism:

$$Aut(C/B) \cong SB^{\times} = \{ u \in B^{\times} \colon N(u) = 1 \}.$$

When $B = M_2(k)$, $SB^{\times} = SL_2(k)$, providing the **highest root** embedding e_{high} : $SL_2(k) \hookrightarrow G_{2,C}$. Of course, since $Aut(C/B) \subset Aut(C/K)$, the image of e_{high} is contained in the image of e_{long} .

Another embedding of SB^{\times} into $G_{2,C}$ follows: if $g \in SB^{\times}$, and $a + b\ell \in C$, define:

$$g(a+b\ell) = (gag^{-1}) + (bg^{-1})\ell.$$

This defines the **short root** embedding e_{short} : $SL_2(k) \hookrightarrow G_{2,C}$. Observe that the images of e_{high} and e_{short} commute¹¹, and their intersection consists of $\{\pm 1\} \subset SB^{\times}$. This provides the embedding:¹²

$$e_{high} \times e_{short} \colon SB^{\times} \times_{\pm 1} SB^{\times} \hookrightarrow G_{2,C}.$$

Suppose *C* is Zorn's split Cayley algebra. If τ is a cyclic permutation of {1,2,3}, then τ naturally acts (by permuting basis elements) on k^3 . This yields an automorphism:

$$\tau \left(\begin{array}{cc} a & \vec{v} \\ \vec{w} & d \end{array}\right) = \left(\begin{array}{cc} a & \tau \vec{v} \\ \tau \vec{w} & d \end{array}\right)$$

We find an embedding $w: A_3 \hookrightarrow G_{2,C}$ in this way.

There are three ways of embedding $M_2(k)$ into the split Cayley algebra *C*, via:

$$\iota_i \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a & be_i \\ ce_i & d \end{array}\right)$$

where (e_1, e_2, e_3) is the standard basis of k^3 . Altogether, we find three conjugate embeddings:

$$e_{short,i} \colon SL_2(k) \hookrightarrow G_{2,C}.$$

In fact, $G_{2,C}$ is generated by the images:

$$e_{short,i}(SL_2(k)), e_{long}(SL_3(k)).$$

Figure 2: The long roots for G_2 . The other six intersection points are short roots.

¹¹ This reflects the orthogonality of the short root and highest long root in the diagram above

¹² This embedding is very important for the split real Lie group G_2 , where *B* is Hamilton's quaternion algebra and *C* is the split octonion algebra (such embeddings exist!). There, one finds an embedding $SU_2 \times \pm_1 SU_2$ as the maximal compact subgroup of the split Lie group G_2 . From this, one finds that the split G_2 is not simply-connected as a topological group; rather, it has a two-fold covering which is simply-connected. This leads to great confusion!