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Octonions

Let k be a field, with char(k) 6= 2. For example, k may be Q or R

or C (though the last case is not as interesting). A Hurwitz alge-
bra over k is a finite-dimensional, k-algebra A with unit element, Resulting structures on a Hurwitz algebra A

include a trace,

Tr(a) = N(a + 1)� N(a)� N(1),

and involution ā = Tr(a) � a. Hurwitz
algebras are quadratic; every element a
satisfies the polynomial

a2 � Tr(a) + N(a) = 0.

together with a quadratic form N : A ! k, such that the associated
bilinear form is nondegenerate and:

N(xy) = N(x)N(y), for all x, y 2 A.

Every Hurwitz algebra1 over k has dimension 1, 2, 4, or 8, as a k

1 This was first proven over R by Adolph
Hurwitz, in Über die Composition der quadratis-
chen Formen von beliebig vielen Variablen,
found in Math. Werke I. For a general field,
a proof can be found in Irving Kaplansky,
Infinite-dimensional quadratic forms admitting
composition, Proc. Amer. Math. Soc. 4, (1953).

vector space.

Figure 1: A. Hurwitz (1859-1919), conducting,
while his daughter plays violin with A.
Einstein. Taken from David Rowe’s
Intelligencer article Felix Klein, Adolph
Hurwitz, and the “Jewish Question” in German
academia (original source, Polya’s Photo
Album).

In what follows, we write k, K, B, C for Hurwitz algebras of
dimensions 1, 2, 4, 8 respectively; K is called a quadratic étale k-
algebra, B is called a quaternion algebra over k, and C is called a
Cayley or octonion algebra over k.

Hurwitz algebras become more pathological as their dimension
rises: quadratic étale algebras are commutative and associative.
However, quaternion algebras are associative but never commu-
tative. Cayley algebras are neither commutative nor associative.
However, Cayley algebras are alternative, so that for any two el-
ements x, y 2 C, the algebra generated by x and y is associative
(e.g., (xy)x = x(yx)).

There are exactly two complete chains of Hurwitz algebras over
the real numbers R. First is the sequence R ⇢ C ⇢ H ⇢ O, where,
C denotes the complex numbers, H Hamilton’s quaternions, and
O Graves’s octonions. 2 The other complete chain of Hurwitz al-

2 A nice historical overview of the quater-
nions and octonions can be found in the first
few pages of Baez’s article The Octonions, in
Bull. A.M.S. Vol. 39, 2001.

gebras over R is R ⇢ R ⇥ R ⇢ M2(R) ⇢ Ospl , where R ⇥ R

denotes the algebra of ordered pairs of real numbers (multiplica-
tion entry-wise), M2(R) denotes the two-by-two matrix algebra,
and Ospl denotes the “split octonions”, which we discuss next.

For any field k (or even a commutative ring!), Zorn’s algebra

Max Zorn, 1906–1993, a student of Artin,
most famous probably for “Zorn’s Lemma”,
but also active in algebra and analysis. His
work on “octonions” can be found in Theorie
der Alternativen Ringe, Abh. Math. Sem.
Hamburgishcen Univ., vol. 8 (1930).

of split octonions over k is defined to be the set of all two-by-two
“matrices”:

w = {
✓

a ~v
~w d

◆
: a, d 2 k,~v, ~w 2 k3},

with composition given by the following formula:3

3 Here, we use the standard dot product,
cross product, and scalar multiplication.

✓
a ~v
~w d

◆
·
✓

a ~f
~y d

◆
=

✓
aa +~v · ~y a~f + d~v� ~w⇥ ~y

a~w + d~y +~v⇥ ~f dd + ~w · ~f

◆
.

1
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Automorphisms and Embeddings

Let us fix a base field k (char(k) 6= 2), and a complete chain4 of 4 It would not be too harmful to consider the
chain

R ⇢ R⇥R ⇢ M2(R) ⇢ Ospl .
Hurwitz algebras k ⇢ K ⇢ B ⇢ C. One may consider the groups of
k-linear automorphisms that preserve the algebra structure5; this

5 Since every element a of a Hurwitz algebra
satisfies a quadratic identity a2 � Tr(a) +
N(a) = 0, it can be seen that the algebra
structure determines the quadratic form N,
the trace map Tr, and hence the involution
ā = Tr(a)� a.

yields groups:

Aut(k/k), Aut(K/k), Aut(B/k), Aut(C/k).

The group Aut(k/k) is trivial, and the automorphism Aut(K/k) =
{1, s}, where s(a) = ā for all a 2 K. The groups Aut(B/k) and
Aut(C/k) are more complicated.

Suppose, for example, that B = M2(k) is the “split quaternion
algebra”6. If g 2 GL2(k), then define the inner automorphism 6 The same methods work for nonsplit quater-

nion algebras as well; every automorphism
of a quaternion algebra is inner, yielding an
isomorphism from B⇥/Z(B⇥) to Aut(B/k).
Indeed, every quaternion algebra splits over
a Galois extension, and so descent applies to
prove that Int is an isomorphism.

Int[g] by:
Int[g](b) = gbg�1, for all b 2 B.

Then, Int is a homomorphism from GL2(k) to Aut(B/k). Fur-
thermore, if z 2 Z(GL2(k)) is a scalar matrix, then Int[z] = 1.
Conversely, if g 2 GL2(k), and Int[g] = 1, then g commutes
with every b 2 B, and hence g 2 Z(GL2(k)). It follows that Int
descends to a unique injective homomorphism:

Int : PGL2(k) = GL2(k)/k⇥ ,! Aut(B/k).

Conversely, if a 2 Aut(B/k), then a is determined by the result-
ing linear automorphism a� of the trace-zero subspace B� ⇢ B.
Moreover, a� preserves the norm quadratic form N on B�, so that
Aut(B/k) embeds into O(B�, N). In fact, a bit more work7 shows 7 To show that the image of Aut(B/k) in

O(B� , N) is contained in SO(B� , N), one
must check that no automorphism of B acts
as a reflection of B� . A reflection would
preserve two orthogonal vectors x, y in B� ,
and send a third vector z to its negative.
But, a basis of B� as a k-vector space is given
by x, y, (xy � ȳx̄), so that the action of an
algebra automorphism a on B� is uniquely
determined by its action on x and y. In
particular, if a fixes x and y, then a fixes z.
This demonstrates that Aut(B/k) injectively
maps to SO(B� , N). For surjectivity, a
dimension argument suffices.

that:
PGL2(k) ⇠= Aut(B/k) ⇠= SO(B�, N).

Automorphisms of Cayley algebras are more complicated
than automorphisms of quaternion algebras. An automorphism
a of (for example, the split) Cayley algebra C restricts to a linear,
norm-preserving, automorphism a� of the seven-dimensional
trace-zero subspace C�. Furthermore, a is determined from a�.
This provides an embedding Aut(C/k) ,! O(C�, N).

The resulting group Aut(C/k) is not easy to describe, but has
another name:

G2,C = Aut(C/k).

The answer to the title of this lecture is: G2 is the automorphism
group of a Cayley (a.k.a. octonion algebra); which Cayley algebra
and which base field should be made clear.
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Subgroups of Automorphisms

Given a complete chain k ⇢ K ⇢ B ⇢ C of Hurwitz algebras over
k, we have considered groups:

Aut(k/k), Aut(K/k), Aut(B/k), Aut(C/k),

each arguably more interesting than the previous. The only
group which is “really new” is Aut(C/k). To “know” the group
Aut(C/k), it is most helpful to understand its subgroups8. Two 8 A good reference for automorphisms of

Cayley algebras is Jacobson’s Composition
algebras and their automorphisms, Rend. Circ.
Mat. Palermo 1958

subgroups which arise most generally are Aut(C/K) and Aut(C/B):
the algebra automorphisms of C, which fix every element of K or
of B, respectively.

First, let us consider a 2 Aut(C/K); such an automorphism a
preserves every element of the k-subspace K, and preserves the
norm and trace, and hence stabilizes the subspace K? of elements
orthogonal to K:

K? = {w 2 C : Tr(wz̄) = 0 for all z 2 K}.

The alternative property9of C implies that K? is a (left) K-module: 9 The nontrivial fact is that if z, w 2 K, and
w 2 C, then z · (w · w) = (z · w) · w. But the
alternative property implies that such a triple
z, w, w lie in an associative subalgebra of C.

in particular,
w 2 K?, z 2 K ) z · w.

Now, every element of C can be expressed uniquely as a sum
z + w (or ordered pair (z, w)), where z 2 K and w 2 K?. There is a
unique Hermitian form10 F : K? ⇥ K? ! K, such that: 10 For all z, z0 2 K, and w, w0 2 K? ,

F(zw, z0w0) = zz̄0F(w, w0).
projK

�
(z, w) · (z0, w0)

�
= (zz0 �F(w, w0)).

It follows that every automorphism a 2 Aut(C/K) preserves
this Hermitian form. More precisely, one arrives at an injective
homomorphism Aut(C/K) ,! U(K?, F). The most precise pos-
sible result is that, in fact, Aut(C/K) is isomorphic to the group
SU(K?, F).

A very good example of Aut(C/K) is provided by Zorn’s split Here, we identify K? with k3 ⇥ k3, with K3,
when K = k⇥ k. Note that “conjugation” in
K is given by z̄ = (y, x) if z = (x, y). If ~z =
(z1, z2, z3) 2 K3 and ~w = (w1, w2, w3) 2 K3,
then the Hermitian form is given by:

F(~z, ~w) = z1w̄1 + z2w̄2 + z3w̄3.

octonions, and the algebra K = k ⇥ k embedded as the diagonal
matrices. Then we find that:

K? = {
✓

0 ~v
~w 0

◆
: ~v, ~w 2 k3}.

One can verify that SU(K?, F) is isomorphic to SL3(k). Specifi-
cally, if g 2 SL3(k), then the action of g on C is given by:

g
✓

a ~v
~w d

◆
=

✓
a g~v

tg�1~w d

◆
.

This yields the long root embedding

elong : SL3(k) ,! G2,C.
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Quaternion subalgebras

One may also consider the automorphisms Aut(C/B) fixing every
element of the quaternion algebra B. Since K ⇢ B, we find that
Aut(C/B) ⇢ Aut(C/K). As in the case of quadratic subalgebras,
we may consider the orthogonal complement B? of B in C. There
exists an element ` 2 B?, such that every element of C has the
form a + b`, for some a, b 2 B. Moreover, if a 2 Aut(C/B), then
it is a theorem that there exists a unique element ua 2 B such that
N(ua) = 1 and

a(a + b`) = a + (uab)`, for all a, b 2 B.

This provides an isomorphism:

Aut(C/B) ⇠= SB⇥ = {u 2 B⇥ : N(u) = 1}.

When B = M2(k), SB⇥ = SL2(k), providing the highest root
embedding ehigh : SL2(k) ,! G2,C. Of course, since Aut(C/B) ⇢
Aut(C/K), the image of ehigh is contained in the image of elong.

long long

highest long

long long

short

long

Figure 2: The long roots for G2. The other six
intersection points are short roots.

Another embedding of SB⇥ into G2,C follows: if g 2 SB⇥, and
a + b` 2 C, define:

g(a + b`) = (gag�1) + (bg�1)`.

This defines the short root embedding eshort : SL2(k) ,! G2,C.
Observe that the images of ehigh and eshort commute11, and their

11 This reflects the orthogonality of the short
root and highest long root in the diagram
above

intersection consists of {±1} ⇢ SB⇥. This provides the embed-
ding:12

12 This embedding is very important for the
split real Lie group G2, where B is Hamilton’s
quaternion algebra and C is the split octonion
algebra (such embeddings exist!). There,
one finds an embedding SU2 ⇥±1 SU2 as the
maximal compact subgroup of the split Lie
group G2. From this, one finds that the split
G2 is not simply-connected as a topological
group; rather, it has a two-fold covering
which is simply-connected. This leads to
great confusion!

ehigh ⇥ eshort : SB⇥ ⇥±1 SB⇥ ,! G2,C.
Suppose C is Zorn’s split Cayley algebra. If t is a cyclic per-

mutation of {1, 2, 3}, then t naturally acts (by permuting basis
elements) on k3. This yields an automorphism:

t

✓
a ~v
~w d

◆
=

✓
a t~v

t~w d

◆
.

We find an embedding w : A3 ,! G2,C in this way.
There are three ways of embedding M2(k) into the split Cayley

algebra C, via:

ii

✓
a b
c d

◆
=

✓
a bei

cei d

◆
,

where (e1, e2, e3) is the standard basis of k3. Altogether, we find
three conjugate embeddings:

eshort,i : SL2(k) ,! G2,C.

In fact, G2,C is generated by the images:

eshort,i(SL2(k)), elong(SL3(k)).


