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PREFACE

This is the lab manual for a course in mathematical modeling for the
life sciences. Our course is adapted from the successful LS30 course
developed at UCLA. We are fortunate that UCLA colleagues, especial-
ly Alan Garfinkel, shared their course materials and built a national
community around teaching mathematics in a fundamentally new way.

If you are a mathematician, of the non-applied sort, here is a descrip-
tion of this course. It is a course that deploys mathematics as a tool
for understanding the natural world, primarily through systems of
ODE (ordinary differential equations). Moreover, the most important
aspects of ODE for this purpose are not the usual foci of introductory
ODE courses, and our students do not yet know what a derivative is.
The most important aspects are (1) describing the natural world with
variables and equations, (2) interpreting equations as statements about
the natural world, (3) Exploring solutions to ODE through graphical
and numerical means. In this way, our approach to ODE embraces
nonlinearity from the beginning, and adopts the visual / geometric
approaches in the spirit of V.I. Arnold and the book of Strogatz rather
than closed-form or series solutions. In the second half of the course,
we delve into delay equations, stochastic models, and linear matrix
models, while maintaining our focus on the numerical and graphical
methods.

The "natural world" we explore is the world of life—from the molecu-
lar to the ecological scales. So we require the student and instructor to
care about chemistry, molecular biology, physiology, and ecology. The
instructor needs to bring a scientific curiosity about the natural world,
but scientific expertise is not needed.

If you are a student, welcome to the class! We ask that you bring an
interest in the natural living world. We do not assume that you bring a
love of mathematics, but we hope this course develops your mathemat-
ical competence and confidence... joy may come later.

This lab manual consists of six chapters, which we call "labs." Each lab
is really a block of activities, mixing computation, exploration, pen and
paper, numeracy drills, etc., around a central theme. Each lab is meant
to take about 3 weeks of work, from beginning to end. After those 3
weeks, the entire lab can be assessed.

The pages of this lab manual are meant to be written on, but please
write your final drafts in the manual, putting your scratch work on
separate paper. By the end of the course, your lab manual will contain
a quantitative foundation for life sciences which you can return to for
years to come.

See Strogatz, S., Non-
linear Dynamics and
Chaos, for mathematical
background.






TooLs

We will be using computers frequently in this class. You will want to have a dependable laptop
computer during every lab session. This computer does not need to be fancy, and you do not
need to install any software. But it does need the following;:

A screen that is at least 13" diagonal -- bigger than a tablet -- for reading, typing, etc.

Battery life at least 2 hours, to work through the lab session even if an outlet is not nearby.

A full English-language keyboard.

Dependable access to the internet.

The ability to log into websites with your UCSC credentials, access your Google account, etc.

G PN

In this section, we discuss tools that we will be using: library access to online articles, Desmos
(a free online graphing tool), and Google Sheets (a spreadsheet).

We will sometimes refer to published articles from scientific journals. Fortunately, our uni-
versity subscribes to most journals, and as a student you have access to the vast majority of
published scientific literature. This is more powerful than Googling, with a bit of practice, and
sometimes Google can take you straight to the article you want.

For example, you might look for an article whose title begins "Oil slick morphology derived
from AVIRIS..." You can go to library.ucsc.edu to start your search, and type this into the UC
Library Search. If you're working from campus, you should see the top search result.

14 x5 | ARTICLE g n B 4
Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon
i_-_ oil spill: Implications for spatial resolution requirements of remote sensors
Sun, Shagjie ; Hu, Chuanmin ; Feng, Lian ; Swayze, Gregg A. ; Holmes, Jamie ; Graettinger, George ; MacDonald, lan ;
Garcia, Oscar ; Leifer, Ira
Marine pollution bulletin, 2016, Vol.103 (1-2), p.276-285
k& ... morphology for different thickness classes. For all AVIRIS-detected oil slicks (N=52, 100 continuous features... 13
% PEER REVIEWED SOURCE

Download PDF 4 Available Online
View Issue Contents 4

On the other hand, you might try going to scholar.google.com and searching for the same title,
"Oil slick morphology derived from AVIRIS..." You should again find the article as the top
search result:

Qil slick morphology derived from AVIRIS measurements of the Deepwater Getitat UC
Horizon oil spill: Implications for spatial resolution requirements of remote

Sensors

S Sun, C Hu, L Feng, GA Swayze, J Holmes. .. - Marine pollution ..., 2016 - Elsevier

... slick morpholegy and size distributions. Thus, the objective of this study is to use the high-resolution

AVIRIS data to document the morphology of oil slicks ... detect and quantify oil slicks. ...

¥ Save WU Cite Cited by 85 Related articles All 10 versions Web of Science: 43

These two tools -- Google Scholar and the UCSC Library Search -- will get you a long way!
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Desmos

Desmos is a free online tool for creating graphs. It is outstanding for exploring graphs of math-
ematical functions and relations. You may have used a graphing calculator in school before --
Desmos is like a graphing calculator, but...

1. Itis freely available online.
2. It is more powerful.
3. Itis more interactive.

Desmos is very good at graphing functions, systems of equations, zooming in and out to find
solutions, etc. It is not so good for graphing or analyzing experimental data -- for that we will
use a spreadsheet and other tools. In this way, Desmos is good for exploring idealized mathe-
matical models and visually understanding purely mathematical principles. Connecting mathe-
matics to broader science is a goal of the course.

To find Desmos, go to www.desmos.com and click on Graphing Calculator. You should see
something like what is pictured below.

Many important
tools, including
changing your x and

This is where you This is a way to Zoom Y labels, domains and
type equations/ func- The main graphing in/out. Or you can ranges.
tions to graph. area is here. Pan, use your mouse /
zoom, etc. trackpad inside the
graphing area.

. &

+
. \

-5 0 5

-5







Google Sheets

Google Sheets is spreadsheet software that you should have access to
through your Google account. You may also use Microsoft Excel if you
wish. Both Google Sheets and Excel have similar structure and layout.

To access Google Sheets, open your web browser and go to sheets.goo-
gle.com, and click the icon that says Blank Spreadsheet. You should
notice a menu at the top of the page, with its own File, Edit, etc. drop-
downs. It should look like what you see below.

E Untitled spreadsheet

File Edit View Insert Format Data Tools Extensions Help

Q_ Menus b ¢ 2 5 100% ~ $ % 0 .00 123 Defaul.. ~

Click on the "Untitled spreadsheet" to give it
an appropriate name, and you can save the A B
spreadsheet in your Google Drive. 4

A spreadsheet stores data in cells. Each cell is 2

labeled by a letter (its column) and a number 3 4|
4
B

(its row). So on the right, you can see the data
(the number 4) entered in cell B3.

Each cell typically contains either some us- -
er-entered data (numbers, words, etc.) or a

formula. For example, if we want cell A3 to

contain the square of cell B3, we could click on

A3 and enter the formula exactly as below:

= (B3 * B3)

The equal sign is the signifier that you are en-

tering a formula, and not just some new bit of A B
data. When you enter that formula, and press 1
return, the spreadsheet should appear with 16

in cell A4. Notice the formula hasn't totally 2
disappeared; you can see it in the formula bar 3
just above the cells. .

We will use spreadsheets for entering and
analyzing data occasionally throughout the
class. There are certainly fancier tools, but this
is a foundational tool used by everyone who
works with data.
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Old school supplies

We will use the latest technology for teaching and learning, for being scientists. At the same
time, we will use some ancient technology which has been useful for decades, centuries, and
sometimes millenia.

For this class, you will need the following items, which are easy to obtain.

1. Lots of blank paper, lined or unlined. A spiral notebooks would be a good idea.
2. A comfortable writing instrument for everyday scribbles.

3. Afew fine-point pens of different colors for your final drafts of graphs.

4. A small ruler for drawing straight lines.

Why do you need these old school supplies? Here is how your labs will be completed:

1. You will meet with other students and our teaching team to work on the labs. Most of the
work at this time should be on scratch paper.

2. On your own time, you will check this work, and complete the notebook with neatly orga-
nized writing and carefully drawn graphs.

3. When the lab is due, you will photograph and scan the section from your binder, and use

Gradescope to submit a PDF file to the grader. The Gradescope App is the most reliable tool
for submitting your labs.

e



Fig, =.

Figure 2 from Volterra, Fluctuations in the Abundance of a Species considered Mathematically. (Full citation
on opposite page). The horizontal axis represents the number of prey (e.g. tuna), and the vertical axis the

number of predators (e.g. sharks). The "cycles" in this diagram represent possible trajectories over time,
i.e., the "fluctuations in the abundance of species.”



| ABORATORY
FLow

Writing in the journal Nature, in 1926, Vito Volterra brings mathematics
to bear on the study of population biology.

A consideration of biological association, or of the mutual in-
teractions between two or more species associated together, has
led to certain mathematical results which may be set forth as
follows.

The first case I have considered is that of two associated species,
of which one, finding sufficient food in its environment, would
multiply indefinitely when left to itself, while the other would
perish for lack of nourishment if left alone; but the second feeds
upon the first, and so the two species can co-exist together.

Volterra's son in law, the zoologist Umberto D'Ancona, had studied the
abundance of fish at the largest ports in Italy -- in Venice, Trieste, and
Fiume -- in the preceding decades. The near-complete halt of fishing
during World War I had led to unexpected fluctuations in fish popula-
tions. The correspondence between D'Ancona and Volterra, between
family members, between a biologist and a mathematician, gave rise to
the study of population ecology.

When Volterra brings mathematics into the picture, he is not just writ-
ing equations. He is representing them visually, using what we now
call trajectories in state space. Equations will exhibit a precise relation-
ship between populations of species. But these equations will be too
hard to solve exactly. Despite this setback, a combination of computa-
tion and visualization will allow us to understand these relationships.
The visualization is largely unchanged from Volterra's century-old
work. Computation has gotten much easier!

This first laboratory introduces the computational and qualitative
methods that Volterra used to understand the interactions of predators
and prey. In the end, these methods apply to broader systems at the
molecular scale as well as the ecological scale.

Volterra, V., Fluctuations
in the Abundance of a
Species considered Mathe-
matically, in Nature, 118,
pp-558-560 (1926).

See also The Biology of
Numbers: The Correspon-
dence of Vito Volterra on
Mathematical Biology. By
Giorgio Israel and Ana
Millan Gasca. Springer
2002.



ST1 Sharks and tuna: conceptual model and time-series

Imagine a region in the ocean, a giant cube of salt-water, where you
are able to count all the fishes big and small. You focus on two species,
sharks and tuna, tracking their numbers over time.

You know a few things about sharks and tuna.

The tuna, feasting on smaller fish, thrive with plenty of food to eat.
Their only worry is the hungry sharks. The sharks eat the tuna. With-
out the tuna, the sharks cannot survive... if there were no tuna, the
sharks would gradually die out. Without the sharks, the tuna would be

quite happy.

EX. If, at your first measurement, you found few sharks and many
tuna, what do you expect to find at your next measurement?

manyj tuna

[ sharks
few

time

EX. Sketch time-series plots: one for the sharks and one for the tuna

-- to describe your expectations over a longer period of time. Once you
settle on your answet, draw those two curves on the axes above. Label
your curves so that the reader knows which one represents sharks and

which represents tuna.

EX. What are some features of these graphs? What do they mean,
practically speaking? Write two sentences about your findings.

This is a time-series
plot. A time-series plot
is a graph in which the
horizontal axis rep-
resents time, and the
vertical axis represents
some quantity (or quan-
tities) of interest.



ST2 Sharks and tuna: variables and change

In mathematics, we use letters (called variables) to represent quantities.
It is crucial to declare your variables — to say exactly what they mean
— before chucking letters all over the place. For sharks and tuna, we
can do this in two sentences as follows.

Let S be the number of sharks in our region of ocean.
Let T be the number of tuna in our region of ocean.

In this course, we are interested in the natural world, where quantities
change over time. So time is a special sort of quantity (we call it "t"),
separate from the others. We have a special symbol to represent the
amount of change: the Greek letter A ("Delta") means "the change in."
To make sense of this, one fixes an interval of time, e.g., At =1 year.
With this time interval chosen, we have the following.

AS is the change in shark population during one year.
AT is the change in tuna population during one year.

If there are 100 sharks this year, and 120 sharks next year, then AS = 20.
If there are 200 tuna this year, and 150 tuna next year, then AT = -50.

Living organisms like sharks and tuna reproduce. When tuna repro-
duce, the existing population of tuna produce new tuna. We might say
that T (the current number of tuna) yields a positive change in itself, or
the change in tuna AT is positively related to T itself.

EX. How do you think AS is related to T? How do you think that AT is
related to S? Positively or negatively? Why? Draw a diagram with the
letters S and T and arrows expressing the positive and negative effects
that sharks and tuna have on each other.

Please do NOT write

S = Sharks
T = Tuna

This bad habit can cause
all sorts of confusion
later. Letters can stand
for numbers. Letters
cannot stand for fish.

reproduction
+

@

We use feedback
diagrams like above,
to express that the
tuna population has a
positive effect on itself,
through reproduction.



ST3 Sharks and tuna: state space.

Let S be the number of sharks. Let T be the number of tuna. When we
consider two populations like this, we have two state variables. They
are quantities that change over time, and one can plot them as a time
series. In a time series, time is plotted on the horizontal axis. But this
requires two plots — one for sharks and one for tuna.

A powerful way to visualize the shark-tuna system uses state space.
For this visualization, the state of the system is a pair (S,T) of numbers
— the numbers of sharks and of tuna — and one plots this point in the
xy-plane. Below, we imagine there are 10,000 sharks and 70,000 tuna at
time t=0, and plot the corresponding point (10, 70).

o
=
state at t=0
o
o
A\’
(o]
c
R=
kS
z
Re
£
3
Z
o
0 Number of sharks (1000s) 100

EX. With reference back to the first exercises, what do you think the
state of the system will be one month later (at t=1)? Justify your an-
swer and plot and label the corresponding point above.

EX. Plot points for the state of the system at t=2, t=3, t=4, etc., based on
your expectations. Connect the dots to form a trajectory in state space.



ST4 Sharks and tuna: trajectories and time-series

Below is a trajectory in state space, with observations of sharks and
tuna every month for 6 months.

o
)
—

t=0, t=6

Number of tuna (1000s)

o

0 Number of sharks (1000s) 100

EX. How many sharks and tuna are observed at t = 2 months?

EX. Describe the change in the number of sharks and number of tuna,
from t = 2 months to t = 3 months.

AS = sharks.

AT = tuna.

EX. Using the trajectory above, graph the populations of sharks and
tuna as two time-series plots on the same axes below. Label your plots
clearly to distinguish the sharks from the tuna. Place dots on your plot
for each monthly observation.

A
100,000

\]

time (months)



BT1 Bathtub: The change equation

Once we use symbols for quantities, and their rates of change, we can
use equations to describe what happens. We call these change equa-
tions.

The basic change equation has the form
AQ = [increases in Q] - [decreases in Q]

Here Q is a quantity we care about, and AQ is the amount it chang-
es. How a quantity changes is related to stuff that yields an increase
and stuff that yields a decrease. When we focus on a quantity and its
change, we call it a state variable. The values of these quantities are
called the state of the system.

Consider a bathtub, with W liters of water in it. What influences the
amount of water in the bathtub (the state of the system)? Usually it is
how much you open the tap, and how much you open the drain. Put-
ting this into a change equation, we write

AW =iT -iD
Here we have three quantities.

Let W be the number of liters of water in the tub.
Let T be the openness of the tap (0=closed to 1=fully open).
Let D be the openness of the drain (0=closed to 1=fully open).

If our time intervals are minutes, At = 1 minute, and AW represents the
change in the water level during a one minute time period.

We also have two parameters, which we have called "i" and "j". The
parameter i is the maximum flow rate of the tap -- when T =1, the flow
rate is i liters per minute. We call these two numbers "parameters" in-
stead of "state variables" because they are properties of the system that
are not changing — at least not during a single bath (we hope!)

EX. What do you think the parameter j represents?

EX. Suppose thati =}, and you open the tap and drain as much as pos-
sible. What happens to the water level?

EX. When you actually fill a bathtub, what quantities (W, T, D) do you
directly affect, and what quantities change throughout the process?

Turning the handle
opens the tap.

Turning the knob opens
the drain.



BT2 Bathtub: Graphing change

A

(o))
e}
—

water in tub

o
—

EX. On the chart above, draw a graph which represents the amount
of water in the bathtub throughout the process of taking a bath. At
the beginning and end, there should be 0 Liters of water in your bath.
Don't forget to Label the horizontal axis with the number of minutes
for each stage. Label the stages "Fill" and "Bathe" and "Drain."

EX. The quantity AW /At represents the rate of change of the quantity
W. Estimate AW /At during each stage of your bath, and the parame-
tersiand j. Your estimates should be realistic, using appropriate units,
given a 60 Liter capacity of your bathtub. Use your personal experi-
ence waiting for a bath to fill/ drain, or look up the flow-rate of typical
faucets.

EX. Suppose that your drain is a bit clogged, so it no longer can be
fully opened. Use a dotted line on the chart above to show how that
would impact the time series.

EX. The slope of a line is its rise (vertical change) divided by run (hori-
zontal change). On your chart, the vertical units are liters and horizon-
tal units are minutes. Therefore slope is measured in L/min (liters per
minute). Relate the slope to the rate of change AW /At, and relate these
to the parameters i and j.

time (minutes)

run

rise

\]



N1 Numeracy: "Percent of

100% of X means all of X.

50% of X means half of X.

33% of X means (approximately) a third of X.
25% of X means a quarter of X.

20% of X means a fifth of X.

10% of X means a tenth of X.

EX. Compute the following percents without
using a calculator. (Mentally)

100% of 30 is

50% of 80 is

33% of 60 is

25% of 800 is

20% of 50 is

10% of 380 is

100% of 250 is 250.

50% of 40 is 20.

33% of 300 is approximately 100.
25% of 200 is 50.

20% of 500 is 100.

10% of 2020 is 202.

EX. Represent the following portions as per-
cents without using a calculator. (Mentally)

151is % of 30.

20 is % of 60.

50 is % of 200.
3is % of 30.

207 is % of 2070.
99 is % of 99.

To compute P% of X, you can also multiply (P/100) - X. This is often easy, using decimals and a

calculator. For example,

37% of 93 equals 0.37 - 93 = 34.41 (by calculator).

40% of 177 equals 0.40 - 177 = 70.8 (by calculator).

EX. Compute the following percents, using a
calculator.
67% of 25 is

3% of 65 is

23% of 230 is

EX. About 34% of UCSC undergraduates are
"first-gen," meaning the first in their family

to obtain a 4-year college degree. If there are
18000 UCSC undergraduates, how many first-
gen students are there?

EX. Why is 4% of 25 equal to 25% of 4? Ex-
plain.



N2 Numeracy: Percents and relative change

Percents are very useful for thinking about quantities in relation to each
other. For example, the number 1000 seems like a big number. But
1000 is only 0.1% of one million... so 1000 is "small" relative to 1000000.

We used Delta (A) already as a notation for absolute change in a quan-
tity. We use percents to describe relative change. Relative change is
often more natural than absolute change in biology.

If a quantity Q changes from 50 to 60, we say AQ=10. But the relative

change is how much it changes as a percent of where it was. Since 10
is 20% of 50 (see the last page!), we say that the change from 50 to 60 is
a 20% increase.

EX. Complete the following sentences to express a change in relative
terms, using percents.

Example. X starts at 30 and ends at 45. AX =15. X increases by 50%.

X starts at 80 and ends at 100. AX=____ . Xincreasesby ______
X starts at 120 and ends at 150. AX=____ . Xincreasesby ___
X starts at 10 and ends at20. AX=____ . Xincreasesby _____

X starts at 1000 and ends at 1100. AX=____ . Xincreasesby ______

Example. X starts at 30 and ends at 27. AX =-3. X decreases by 10%.

X starts at 100 and ends at 70. AX = . X decreases by .

X starts at 90 and ends at 60. AX = . X decreases by .

EX. Suppose that X starts at 100. Then X increases by 10%. Then X
decreases by 10%. What happens? Explain if you can!



Pop1 Populations: Relative change

Imagine bacteria, chilling on a plate, watching Netflix. The bacteria
reproduce by dividing every hour. If you have 1000 bacteria at 2pm,
then you have 2000 bacteria at 3pm. After those 2000 bacteria divide,
and you have 4000 bacteria at 4pm. Etc.

To describe this using a "change equation", we start as usual.
State variable: Let B be the number of bacteria on the plate.
Time interval: At=1 hour.

Change equation: AB/At=7???

We cannot write the change equation as AB/At =1000. This is true in
the first hour, perhaps, as B changes from 1000 to 2000 and AB = 1000.
But then, as B changes from 2000 to 4000, it appears that AB = 2000.

What happens here is that B changes proportionally to B. The popula-
tion change is proportional to the population! The form of this equa-
tion is what we will study in detail in the next chapter.

Change equation: AB/At=B

What if only half the bacteria reproduce each hour? At2pm, we begin
again with 1000 bacteria. Half of these (500 bacteria) divide and half
remain. At 3pm, we expect 1500 bacteria. In this situation, B increases
by 50% each hour.

Change equation: AB/At=0.5B. Notice that 0.5 B is another way of
saying "50% of B."

EX. Use the same model, with 1000 bacteria at 2pm. As above, suppose
that AB/At = 0.5 B. How many bacteria would you expect at 4pm?
Ilustrate the process with a schematic (like the one in the margin) and
show your computations.

1000 bacteria at 2pm

500 | 500

cell
X:livision

1500 bacteria at 3pm



Pop2 Populations: Birth rate and death rate

Let P be a population of organisms. In other words, P is a quantity

which is the answer to a "how many?" question. ¥
Populations have two important parameters: their per capita birth a A

rate, which describes the relative increase in population, per unit time,

due to births of new organisms. The other parameter is the per capita

death rate, which describes the relative decrease in population, per unit

time, due to deaths of existing organisms. The change equation looks -~

like the following. P B
AP/At=pP - dP. I/

Here B ("beta") is the per capita birth rate. Similarly, d ("delta") is the /
per capita death rate. We often use lowercase English or Greek letters 1.29. Above are the

for parameters. Practice writing your Greek in the margin. Greek letters alpha,
beta, gamma, and del-

ta. Copy these letters
below.

EX. The annual (per year per capita) birth rate in Wisconsin is "10
births per 1000 people every year," or = 10/1000 = 0.01 per year. If
there are 6 million people in Wisconsin in 2024, how many people do
you expect in Wisconsin in 2025? In 2026? Only account for births.

EX. The annual death rate in Wisconsin is "8 deaths per 1000 people
every year," which means d = 8/1000 = 0.008 per year. Revise your —_ = = — —
answers to the previous question to account for both births and deaths.

Write the letters vy, d.

EX* We can improve our model by age-stratification. To keep things
simple, let us think of a population C of non-reproducing children and
A of reproducing adults. How do you think AC is related to A? How
do you think AA is related to C? Write a pair of change equations
which reasonably describe this situation.

11



SL1 Semilog plots and Relative change

On the right is a plot

of the world popula- 7
tion since 10,000BCE.

Looking at the plot, it 6

seems like the world
was an empty place
until around 500BCE.
That is because the
current population of
billions swamps the

World population, billions
w

past population in the 5
millions. This prob-

lem in visualization 1
can be solved with a

semilog plot. 0|

10,000 BC 8000 6000 4000

A semilog plot uses a logarithmic scale on the vertical axis. The effect
is that an interval on the vertical axis represents a relative change. If
we use a Log, -scale, each interval on the vertical axis represents a
10-fold change (multiplication by 10)! Below is the world population,

since 10000BCE again, but this time on a semilog plot.

2000

1 Billion’

|
=

100 Million

10 Million/{

8000BcE  6000BcE  4000BCE

EX. According to this graph, estimate how many years it took for the
world population to grow from 10 million to 100 million (a 10-fold
change).

EX. If the population growth rate between 40008cE and 0 continued
through to the present day, what would the current world population
be? Estimate this by sketching a line on top of the graph above.

2000BCE 1ce Toda

AD 1 1000 2000

Graph adapted from
Wikipedia, World pop-
ulation growth (lin-log
scale).png. The data is
the same as the plot
above!

The evenly spaced "ma-
jor" horizontal tick lines
are at 10 million, 100
million, and 1 billion.
The "minor" tick lines
count from 1 million, 2
million, 3 million, etc.,
up to 10 million, then
20 million, 30 million,
40 million, etc., up to
100 million, then 200
million, etc.



SL2 Drawing a semilog plot

On the right is a table showing the electricity used in the United States
over the past century. These numbers are in "relative" units, with 1920
set to 1. So in 1930, the electricity usage was 2.31 times the usage in
1920. We can visualize this growth nicely using a semilog plot.

EX. Plot this data on the semilog axes below. Note that we are using
a Log, -scale on the vertical axis, so every vertical unit upwards corre-
sponds to multiplication by 2 (a 2-fold change). Hint: to accurately
locate 3.597 note that Log,(3.597) = 1.847 is between Log,(2) = 1 and
Log,(4) = 2. Use these logarithms to locate the points, as shown below.

_ 128
)
N
= o4
8
N
©
T 16
)
)
%D 8
4 B Log,(4)=2
T
:§ 2 Log,(2)=1
B
1o Log,(1)=0

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

EX. The graph that you draw above should appear almost like a
straight line between 1920 and 1970. Use this line to complete the fol-
lowing sentence:

During the 1920s through the 1970s, U.S. electricity usage dou-

bled every years.

EX. Use the table to compute AE during each decade. For example, in
the 1920s, AE = (2.310 - 1) = 1.310. Use this, and decade-time intervals
At =10 years, to complete the following relative growth rates.

AE/At=______E, during the 1920s.
AE/At=_____E, during the 1930s.
AE/At=_____E, during the 1940s.
AE/At=_____E, during the 1950s.
AE/At=_____E, during the 1960s.
AE/At=_____E, during the 1970s.
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Year | Electricity
used in U.S.

1920 |1

1930 |2.310

1940 | 3.597

1950 |8.513

1960 |19.344

1970 |39.115

1980 | 58.340

1990 (77.234

2000 | 96.665

2010 | 104.985

Data from Electrifica-
tion of the United States
economy, 1920-2021,
from Primary energy use
in the United States, by
O'Connor et al. Re-
trieved from visualizin-

genergy.org.




ST5 Sharks and tuna: real data.

Sharks and Tuna: Kilograms brought to port in Trieste (1902 - 1935)

1000000
100000
10000
1000

100

1902 1905 1908 1911 1914 1917 1921 1924 1927 1930 1933

=O-Sharks (Squalus acanthias) =#=Tuna (Thunnus thynnus and Euthynnus alletteratus)

EX. The semilog plot above displays the total weight (in kilograms) of sharks and tuna caught
in the Adriatic sea and brought to port at Trieste, between 1902 and 1935. How do you think
this relates to the population of sharks and tuna in the Adriatic sea? In what ways might this
data be a good or bad proxy for population?

EX. Look up the dates of World War I. How might WWTI have affected the actual populations in
the ocean? The fishery catches? What specific effects do you see in the plot above?
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STé6 Sharks and tuna: counting interactions

Here we return to the example of sharks and tuna in a region of water.
As before, let S be the number of sharks, and let T be the number of
tuna. Here we are interested an a quantity that both sharks and tuna
care about: let I be the number of "interactions" between sharks and
tuna. In other words, I is the number of times that a shark and tuna are
close enough together for the shark to eat the tuna.

EX. Run the Shark-Tuna Interaction Simulator. Draw a plot below, show-

ing how the number of interactions (y-axis) depends on one state vari-
able with the other state variable fixed. Guidelines are in the margin.

Counting interactions

with fixed.
wn
o
.8
©
&
—
9
S
o
0 —
Number of

EX. The empirical relationship between I, S, and T is I =k ST,
where k is some constant. Pooling your experiment with your class-
mates and their plots, estimate the constant k. Describe how you
achieved this estimate.
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1. Choose one state
variable (sharks or tuna)
and keep that number
fixed throughout.

2. Try a range of pos-
sibilities for the other
state variable, including
at least 5 distinct values,
and run the simulation
at least 5 times for each
value (25 data points
minimum).

3. Within the plot, draw
dots for all of your
observations. Plot a line
or curve which models
the empirical relation-
ship between "I" and
your state variable.

An empirical relation-
ship is a formulaic
relationship between
quantities which is sug-
gested by observation
and experiment.

But empirical relation-
ships are not always
supported by a "mecha-
nism" to know why the
relationship holds.



ST7 Sharks and tuna: Lotka-Volterra equations.

Let S be the number of sharks. Let T be the number of tuna. These are
our state variables. We are now at the point where we can model the
shark-tuna system with change equations:

AS/ At = -dS + pST
AT/At =BT - gST

The first equation says that the change in shark population (AS) aris-

es from two sources. There is a net death term -80S, because without
enough food (tuna), the sharks slowly die off. But interactions between
sharks and tuna (chomp!) provide food for the sharks, helping them
survive and reproduce. There is an interaction term pST, with posi-
tive coefficient p reflecting the fact that predations are beneficial to the
sharks.

The second equation says that the change in tuna population (AT)
arises from two sources. There is a net birth term BT, because without
the hungry sharks, the tuna would happily survive and reproduce. But
interactions between sharks and tuna (chomp!) kill off the tuna, leading
to a negative interaction term -qST. Interactions are bad for the prey.

EX. Take the following parameters in the above equations.
0 =0.04, p=0.003, p =0.06, q = 0.004.

Suppose our time interval is At = 1 month. If at one moment there are
20 sharks and 40 tuna, what do you expect for AS and AT? How many
sharks and tuna do expect at the next month? Round your answers
down to a whole number. Record your answers in the margin (at t=1).
Continue this process to record the numbers of sharks and tuna at t=1,
t=2, t=3, in the table in the margin.

EX. Plot a time series below for S and T displaying their populations
at these four moments.

These are called the Lot-
ka-Volterra equations.
The interaction terms
reflect the feedback
loop below.

eats
/N-
+\_/
is food for

Our parameters (a,b,c,d)
will always be assumed
positive. For example,
since "c" is positive, the
term "-cST" is a negative

interaction term.

AS | AT

20 | 40

WLDIN|R O]+



ST8 Sharks and tuna. Simulation and interventions.

The previous exercises show that it is tedious to do this sort of shark
and tuna accounting by hand. But computers can do this work very
quickly. Load up the Shark and Tuna Trajectory Simulator.

EX. Take the starting values S = 20 and T =40, as you did before. Find
the appropriate place on the shark-tuna trajectory plot and click to start
the trajectory. Sketch the trajectory below.

Use the default parame-
ters with the simulator:

0=04,
p=0.03,
B=0.6,
q=0.04.

Number of tuna

These are similar to
what you did "by hand"
but using a different
time interval.

0 Number of sharks

EX. The simulation shows a lot of arrows, called a vector field. What
do you think these arrows represent in this context?

EX. How do the time series in the simulation resemble or differ from
what you found by hand?

EX. The simulation allows you to instantly "kill" 10 tuna or 10 sharks.
Try this out at different points in the trajectory. Explain how it is pos-
sible to "kill" sharks, but end up in a situation where the shark popula-
tion grows even greater than before.
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ST9 Sharks and tuna: reflections on modeling

We have explored a mathematical model of sharks and tuna, the Lot-
ka-Volterra model of populations of predators and prey. This model
describes a system with two state variables S and T, whose change is
determined by assumptions about birth and death and predation.

This whole endeavor, from identifying state variables and relevant
parameters, to describing their change via equations, is called building
amodel. Have we done a good job? Every model has strengths and
weaknesses; identifying these is called evaluating the model. Possible
strengths of models include:

Accurate descriptions: does the model accurately describe previous
observations, when appropriate parameters are chosen?

Accurate predictions: does the model accurately predict future obser-
vations?

Parsimony: does the model have more parameters than should be nec-
essary, or just a few necessary ones? Does the model only "fit" the data
because a zillion parameters are tweaked the right way?

Robustness: do small changes in assumptions or parameters destroy
the utility of the model? Or does the model hold up, with minor ad-
justments?

Interpretability: can one easily interpret each term of the model, to un-
derstand how different factors will change the outcomes?

Insightful: does the model provide insight that would be difficult to
find by simple observation alone?

Adaptable: can the model be easily adapted to slightly different situa-
tions or by adding layers of complexity as needed?

Generalizable: does the model apply to a broad range of circumstanc-
es, or just to the very specific situation it is designed for?

One cannot hope for a model with all of these strengths, especially not
in a complex world of living organisms in their natural environment.
But if we temper our expectations, we can hope to find models with
some of these strengths.

In contrast, physicists sometimes find models with all of these
strengths. Newton's law of gravity, for example, or the standard model
in particle physics, are examples. These models can be "better" be-
cause they address zillions of non-living, controllable "things" made

of near-identical parts. Every electron, every hydrogen atom, every
photon follows the same rules. In that way, physicists have it easy.



ST10 Sharks and tuna: reflections on modeling

EX. Evaluate the shark-tuna model we have studied. Identify its
strengths and weaknesses, using the terms from the previous page, and
pointing to specific evidence from your explorations. Write 100-200
words with your evaluation and evidence.
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Lang1 Expression: English to Variables and Equations.

Example in words: a child is growing at the rate of 2 inches per year.
State variable: Let H be the height of the child (in inches).

Time interval: At =1 year.

Change equation: AH/At =2 inches per year.

In each of the following, write the state variable(s) with units, time in-

terval, and change equation to describe the rate of change. Use a "Let"
sentence for each state variable, as in the example above. Answers

may vary!
EX. Example in words: After her parachute opens, a skydiver de- Meters per second
scends at a speed of 5 meters per second. (m/s) is the SI unit for
speed. For comparison,
. . 10 m/s equals about
State variable: Let be 22.4 mph (miles per

hour), or exactly 36 kph

. ) (kilometers per hour).
Time interval: At =

Change equation: A__ / A___

EX. Example in words: Alan makes $2000 from his job each month,
pays $1200 each month for rent and $400 each month for food.

State variable:

Time interval:

Change equation:

EX. Example in words: A barista pours hot water onto the coffee A teaspoon is about 5
grounds at a rate of 10 mL (milliliters) per second. The resulting coffee ~ milliliters.

pours out of the bottom of the filter at a rate of 8 mL per second.

State variable:

Time interval:

Change equation:



Lang2 Interpretation: From Equations to Words

Example of a change equation: AL/At=-3

Example in words (fictional story!): A spring-loaded tape measure is
pulled out all the way, then released.

State variable: Let L be the length of the extended tape measure, in
inches.

Time interval: At =1 second.
In each of the following, creatively write an example in words that
fits with the change equation. Your example must have a quantifiable

state variable, with units, for which the change equation is reasonable.
Use a "Let..." sentence to declare your state variables.

EX. Change equation: AM/At =700 - 300

Example in words: (both numbers 700 and 300 should occur).

State variable: Let be

Time interval: At=
EX. Change equation: AR/At=5

Example in words:

State variable:

Time interval:
EX. (Challenge) Change equation: AA/At=2B and AB/At=3.

Example in words:

State variable(s): (A and B should be distinct but related quantities.)

Time interval:
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IG1 Insulin and glucose: introduction

Now we make a dramatic shift in biology, from sharks and tuna to
insulin and glucose. This is a shift from ecology to physiology. But
mathematically, it is not much of a shift — and that is the power of
mathematics!

Insulin and glucose are two molecules that can be found in your blood-
stream. Glucose is a sugar. You get glucose by eating, and your liver
produces some glucose too. Glucose enters muscle and fat and other
cells, where it is used or stored.

AG = [meals + liver production] - [cell usage and cell storage]

Insulin is a hormone, a protein secreted by beta cells in the pancreas.
Insulin slowly degrades, like a population dying off.

Al = [production by beta cells] - [degradation rate] I

These two equations govern how glucose and insulin would change
over time, if they did not interact with each other. But there are com-
plicated interactions!

When insulin binds to receptors on muscle and fat cells, those cells
send glucose transporters to their surface, and this causes the cells to
transport glucose out of the blood stream. The result is that insulin has
a negative influence on glucose in the bloodstream.

AG/At=m-sIG

Here "m" stands for the rate of change of glucose due to eating, liver
production, and metabolism.

EX. If you have no insulin, i.e., untreated diabetes, and you eat nor-
mally, what will happen to your glucose levels according to the above
change equation? Draw a graph and write a sentence to explain.

EX. The parameter "s" is called insulin sensitivity. How does a low or
high value of s effect the regulation of glucose by insulin? Practically
speaking, what does this mean if you eat a sugary meal and have high
or low insulin sensitivity (s)?

OH

One common form

of glucose. There are

some unlabeled carbon

and hydrogen atoms,

in this sort of diagram.

The chemical formula of

glucose is C,H ,O,.

Insulin is a big mole-

cule. Its formula is:
C,.H,N_O_S

2577 7383 "65 7776



G2 Insulin and glucose: minimal model

In studying the insulin-glucose system, we consider two state vari-
ables, called G and I.

Let G be the concentration of glucose in the blood (in mM)
Let I be the concentration of insulin in the blood (in pM)

The change equation for glucose is below.
AG/At=m-sIG

Insulin down-regulates glucose (as sharks "down-regulate" tuna). At
the same time, glucose up-regulates insulin. When glucose levels are
high in the bloodstream, the billion beta cells in your pancreas secrete
more insulin in response. This influence of glucose on insulin is mod-
eled by

G2
AI/AthbW-YI

Here q is a parameter representing the efficiency of insulin production
by the beta cells, and b is the total mass of the beta cells. The parameter
v is the insulin degradation rate; insulin molecules naturally degrade
in the bloodstream (just as sharks would slowly die off in the absence
of tuna). The mysterious term is the following function of G.

GZ

HG) =1ar

EX. Graph this function using Desmos. Sketch this graph below.

Glucose concentration

EX. How does an increase in glucose concentration (G) affect the
concentration of insulin, according to this function? The function H(G)
seems to approach a limit; what is this limit? What does it represent
about the effect of glucose on insulin?
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The units here are mM
= millimolar, or milli-
moles per liter, and pM
= picomolar, or pico-
moles per liter.

Glucose must be regu-
lated tightly for health,
between about 3.9 and
5.6 mM when fasting.
Insulin is typically be-
tween 30 and 90 pM in
the bloodstream when
fasting.

A "mole of X means
6.022 - 10 molecules

of X, almost a trillion
trillion molecules. So a
millimole of glucose is
about 6 - 10 molecules.
A picomole (trillionth of
a mole!) is about 6 - 10"
molecules.

'f\.l I
IH(G)—W{0<G}

Typing this into Desmos
will restrict the domain
of G to avoid meaning-
less negative values.




|IG3 Saturation: sigmoid curves and the Hill function

Since it arises frequently in biology, we take a deeper look at this mys-
terious term that arises in the change equation.

G2
AI/AthbW-YI

G? . o . .
The term 1oz describes how glucose concentration influences insulin

production. Its graph exhibits two phenomena:

1. A direct relationship. As glucose concentration increases, insulin
production increases.

2. Saturation. Insulin production is physiologically limited. A beta
cell can only produce so many insulin molecules per second. Even if
glucose concentration increases to an extreme amount, the insulin pro-
duction may only creep up slightly towards its theoretical limit.

Direct relationships with saturation are often modeled by sigmoid
curves, as shown below. Note how it increases slowly, then quickly,
then slowly again... approaching but never crossing its ceiling.

EX. Use Desmos to graph the function (the Hill* function)

Gn

HG) =ter

Here G is still the variable graphed on the horizontal axis, and k and n
are parameters. How do the parameters k and n affect the shape of the
sigmoid curve? Answer this question in 2-3 sentences, focusing on the
landmark point "P" on the above graph.

—Ceiling (limit)

— Halfway to ceiling

— Minimum

* Named for Achibald
Hill, not because its
graph looks like a hill.

Instructions: Type the
following into Desmos.

H(6) = - {20}

+a"

Add sliders for both pa-
rameters k and n. Click
to allow n to vary from
1to 5. Allow k to vary
from O to 1.

Use sliders to explore!



G4 Insulin and glucose: minimal model

Now we can understand every term in the minimal model of the insu-
lin-glucose system. This model contains two change equations.

AG/At=m-sIG

G2
AI/AthbW-YI

EX. There are four terms in these two change equations. These terms

2
are: m, sIG, qb 1+LG2’ and yI. These terms describe events that posi-

tively and negative influence the concentrations of glucose and insulin.

For reference, write down the meanings of each term in the change
equation.

Example: m represents the change in blood glucose due to meals and
liver production, minus what is metabolized.

sIG represents:

GZ
qb 1z represents:

Y I represents:

EX. Insulin yields a decrease in glucose concentration, and glucose
yields an increase in insulin production. In this way, there is a simi-
larity between the glucose-insulin system and the tuna-shark system.
Write down two differences between the two systems, with specific
reference to terms in the change equations.
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We use the word term
loosely to mean some-
thing that is added/
subtracted to other
things.



IG5 Insulin-Glucose: simulation

Now load the Insulin Glucose Regulation simulator. This simulator uses  The simulator also in-

the minimal model to understand the effect of various parameters on cludes an extra term
blood glucose and insulin concentrations. Notice that the horizontal for hepatic glucose
axis is time (a 20-hour window is shown). There are two vertical axes;  production. When
the left one is for the red Glucose line (in mM), and the right one for the parameter a is
the blue Insulin line (in pM). When you load the simulator, it should zero, this term is zero
display a steady state, the system is in equilibrium, as evidenced by and can be ignored.
the flat graphs. We will ignore o, kK,

and c until Lab 4.
EX. What is the equilibrium concentration of glucose? Of insulin?
Make sure to include the appropriate units.

EX. Increase the glucose production (m) parameter, as if you were
regularly consuming more glucose, and click the "simulate" button to
see the effect. Does the system reach an equilibrium? How are the new
glucose and insulin concentrations related to the concentrations you
found before?

EX. If you regularly consume a lot of glucose, your body will slowly
increase the mass of your beta cells. Experiment with the parameters
m and b (beta cell mass). How can your body keep its glucose concen-
tration within the safe range (about 3.9-5.5 mM) by increasing beta cell
mass? What happens to insulin concentration?

EX. People's insulin sensitivity (s) varies widely. How can differences
in beta cell mass keep glucose concentration in the safe range, even
with wide variation in s?



|G6 Insulin-Glucose: simulation

During pre-diabetes, insulin sensitivity (s) tends to be lower, and beta
cell mass (b) grows larger to keep glucose levels in the safe range. But
eventually, beta cell mass saturates -- the body cannot produce any
more beta cells or make them any larger.

EX. Using the simulator, what will you find in glucose and insulin
levels during pre-diabetes? And what will you find when the param-
eter (b) cannot grow larger but (s) continues to shrink. (This is called
insulin resistance).

EX. When glucose concentrations rise above 10mM, beta cells are
killed by the high glucose levels. Using the simulator, what would be
the effect of this on glucose and insulin concentrations? This is called
type-2 diabetes.

In type-1 diabetes, the
immune system attacks
the beta cells, leading to
a similar result.
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IG7 Insulin-Glucose: trajectories in state space
The minimal model of the insulin-glucose system is given below.

AG/At=m-sIG

G2
AI/AthbW-YI

Since we are working with two state variables, G and I, which change
over time, we can consider trajectories in state space -- just like sharks
and tuna. To make things simpler, we set all of the parameters to 1,
and consider the resulting system of change equations.

AG/At=1-1G
GZ
AI/At=1+—G2-I

Suppose that our time interval is At =1 hour.

EX. Suppose that at t = 0, the glucose level is G=2 and insulin level

is I=1. What will be the glucose and insulin levels at t=1? At t=2? At
t=3? Draw a picture displaying the trajectory in state space, with glu-
cose G on the horizontal axis, and insulin I on the vertical axis. Tabu-
late the values of t, G, and I in a table in the margin.

Al

LI = O




IG8 Insulin-Glucose: trajectories in state space

Load the Dynamical Systems Calculator. This is a general-purpose tool
for visualizing trajectories in state space, given by change equations
like we have seen for sharks and tuna, or insulin and glucose. Our
two state variables are glucose (on the horizontal axis) and insulin (on
the vertical axis). So for the simulator, we let X represent the glucose
concentration and Y the insulin concentration. To enter our change
equations, use the following:

X'equation: 1 - Y*X Y' equation: (X*X/ (1+X*X))-Y
Set Xmin = 0 and Xmax = 2. Set Ymin = 0 and Ymax = 2.
Turn on the vector field arrows, and start the simulation!

EX. Resetting the simulation as needed, what happens to the red dot
that starts at x=2 and y=1? Compare this to what you found in the
previous exercise.

EX. Recall that the horizontal x-axis represents glucose concentration
and vertical y-axis represents insulin concentration in this simulation.
Looking at many trajectories, describe what happens. How does that
compare to what you found in the glucose-insulin simulator? How
does that compare to sharks and tuna?
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F1 Flow conclusion: model reflection

EX. Evaluate the insulin-glucose model in comparison to the shark-tuna
model. In what ways do you find one model more useful than another?
Why might that be expected or surprising? Write your answer in 100-200

words.




F2 Flow conclusion: dissecting change equations
AS/At=-3S + pST AG/At=m-sIG
—BT- G?
AT/At=pT-qST Al/At=qb iz -v1
You have studied two systems of change equations. One models shark
and tuna populations (S and T), and the other models glucose and
insulin concentrations (G and I). One is at a large ecological scale. The

other is at a small physiological scale.

EX. Look at the letter soup of these change equations. What are the
state variables? What are the parameters?

EX. Glucose increases according to a simple constant m. Tuna increase
according to a more complicated term BT. Explain why these increase
terms are different.

EX. What is the meaning of the terms in the shark-tuna model labeled
pST and -qST?

EX. Why does the insulin increase term have the weird expression
2

% in it? Why might that be a reasonable term to have?
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AC MODEL

FISHER ELECTROPHOTOMETER

A 1941 Fisher Electrophotometer, used to measure optical density. Image from a sale by Olde Good Store,
retrieved in July, 2023 from https://ogtstore.com/reclaimed-antique-electronics/fish-
er-electrophotometer/



| ABORATORY 2
GROWTH

In a 1999 commentary, Frederick Neidhardt reminisces about his expe-
rience with population growth in the laboratory, in the 1950s.

For me, encountering the bacterial growth curve was a transform-
ing experience. As my partner and I took samples of the culture
at intervals to measure optical density and plotted the results on
semilogarithmic paper, we saw, after the lag period, a straight
line developing... beautiful in precision and remarkable in speed.
As the line extended itself straight-edge true, I imagined what
was happening in the flask—living protoplasm being made from
glucose and salts as the initial cells (Klebsiella aerogenes, they
were called then) grew and divided. The liquid in the flask pro-
gressed from having a barely discernible haze to a milky white-
ness thick with the stuff of life, all within a very brief Boston
winter afternoon. Mutably specific autocatalysis, the physicist
Erwin Schrodinger had declared a few years earlier, was the
defining characteristic of living systems, and I had just witnessed
the working out of the mathematical statement of that proper-

ty, dN/dt = kN (where N is the number of cells or any extensive
property thereof, ¢ is time, and k is the first-order rate constant [in
reciprocal time units]).

In this laboratory, we will look at a few types of growth curves, in-
cluding the exponential growth which is characterized by that math-
ematical statement dN/dt = kN that so impressed Neidhardt. We will
"unpack" this mathematical statement—a differential equation! — to
understand every letter and every symbol. We will encounter some
real data, resembling what Neidhardt saw, but collected through some
more modern methods.

As suggested by Neidhardt, the letter N will be used to describe a
population. N is how many cells are present in the petri dish, or maybe
how many wolves are within a square mile. The letter ¢ will be used to
measure time, often starting from a certain moment called "time zero".
The letter k is a parameter. And dN/dt is the "derivative" which will
occupy our attention for weeks to come.

33

Frederick C. Neidhardt,
"Bacterial Growth: Con-
stant Obsession with
dAN/dt" in the Journal of
Bacteriology, Dec. 1999,
Vol. 181 (24) p. 7405-
7408.

We have boldfaced
some words from Nei-
dhardt's commentary.
What do they mean in
this context?



LG1 Linear growth of a population
.
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F1G. 6.—Residual growth of a streptomycin requiring strain of Bacilius subtilis in
the absence of streptomycin. Growth is linear for over 4 hr. (25).

The Figure above displays something very unusual—the linear growth
of a strain of bacteria... in this case deprived of streptomycin which it
requires to grow normally.

Let t denote time, in minutes. Let N denote bacterial density. This is
probably "optical density" which is an observable proxy measurement
for the population of bacteria.

EX. What do you think the circular marks represent? What do think
the line represents?

The circular marks represent

The line represents

EX. How long is the time period represented in this graph?

minutes.

EX. What was the bacterial density at the first observation (at t=0)?

N(0) =

EX. Let N(t) be a linear function whose graph is the line displayed in
the figure. Estimate its slope and intercept, and write its equation.

N(t) =

Figure 6 from Monod,
"The growth of bacterial
cultures" in Annu. Rev.
Microbiol., 1949 (3), pp.
371--394.

A proxy measurement
is a quantity we can ob-
serve, which is strongly
correlated to a quantity
we care about. We

care about how many
bacteria there are. We
can't easily count them,
so we measure how
opaque the dish of bac-
teria looks. The more
bacteria, the less light
that gets through.



LG2 Linear growth rate
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Chapter VII, Figure 5

The Figure above displays something much more typical—the growth
of Lotka's Elements of

of a population (Drosophila, or fruitflies) which is first slow, then fast, thas
then slow, under controlled laboratory conditions. Here time t is Pﬁ Yy szcal. Biology (1925),
. . . . . displaying data collect-
measured in days, and population N is based on a direct count of flies.
. . . ed by Pearl and Parker.
The growth rate in a population is given by the formula AN/At, and is
measured in units of "flies per day" in this setting.

EX. Using the Figure above, estimate the growth rate of the Drosophila
population, during the following time intervals.

During days 6-12, AN /At = flies per day.
During days 12-18, AN/ At = flies per day.
During days 18-24, AN/ At = flies per day.
During days 24-30, AN /At = flies per day.
During days 12-30, AN/ At = flies per day.

In each of the above estimates, you computed a "rise /run." Thus each
AN/ At is the slope of a line segment. In this way, you should observe:

The slope of the population time-series graph
equals
the rate of population growth.

EX. Draw a right triangle on the Figure above, correponding to one of

the time intervals listed above. Mark the quantities AN and At on this
triangle, and note that AN/ At is the slope of the hypotenuse.
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LG3 Linear functions

There are two conceptually distinct ways to think about linear func-
tions. Let X be a quantity that changes over time (t). We say that Xis a
linear function of t in the following circumstances. Memorize these!
Examples:
1. The relationship between X and t is given by a formula X = mt + b,
for some parameters m and b. 1. X=3t+2

2. The rate of change AX/At is constant, no matter what time interval 2. AX/At=3

we look at.
3. The time series looks

. . . . . like the line below.
3. The time-series plot of X is a straight line. Hee The fine below

We can understand linear functions by going back and forth between

these characterizations. For example, if your hair length H changes at a

constant rate AH/At = 0.4 mm/day, then your hair length is givenby a X

formula H = 0.4 t + b, where t is measured in days (since some starting

day), and b is the length of your hair on day 0. The time-series plot of

H will be a straight line with slope 0.4. time (t)

Y

EX. The population of jellyfish is given by the formula] = 1.2 t + 800,
where t is measured in months. Describe AJ/At and draw a time series
of J. Label your axes carefully.

EX. Your container contains 60 pieces of gum when you purchase it,
and you chew 2 pieces per day. Let G be the number of pieces of gum
in your container. Describe G as a linear function of time by a formula,
describe its rate of change AG/At, and draw a time-series plot of G.
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LG4 Fitting a linear function

In practice, scientists often gather data through experiment, graph
their data, and observe a pattern of linear growth or decay. To estimate
slope and intercept, scientists frequently use computers to fit a linear
model. The following exercises will show you how this is done.

Fission yeast (Schizosaccharomyces pombe) grow longer over short pe-
riods of time, so that their growth can be observed under a microscope.
In the margin, you can find a table with the measured length of a single
yeast cell tracked over a period of 160 minutes.

EX. Let L be the length of the observed yeast cell, and let t be time in
minutes. Sketch a time-series plot of L below, taking care to label axes.

EX. Enter the data from the table into the Linear Regression with Log
Scaling tool. Use the slope and intercept there to describe the relation-
ship between L and t.

L= t+

EX. What is the growth rate of the yeast cell, using the slope of the re-
gression line above? Compare this to the growth rate that you find by
computing AL /At on the entire 160-minute time period.

EX. Is the rate of change AL/At constant, no matter what time interval
we look at? Should we say that L is a linear function of t or not? If not,
what do you think we should say?
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Image of fission yeast
culture from The Cell
Cycle. Principles of
Control by David O.
Morgan.

Below: Table 1, from
The time-profile of cell
growth in fission yeast, by
Buchwald and Sveiczer,

in Theoretical Biology
and Medical Modelling
(2006).
Time Length
(min) (um)
0 8.667
10 9
20 9.333
30 10
40 10.333
50 10.667
60 11.333
70 12
80 12.333
90 13
100 13.333
110 14.333
120 15
130 15.667
140 16
150 15.667
160 16




F1 Graphs of linear, power, and exponential functions

EX. Sketch a graph of the 16 functions below. You may use a tool like Desmos to help, but try to
guess and use prior knowledge as much as possible.

i e [ S
| | I |
| | | |
y=2x y=2x-1 y=0.5x+1 y=-0.5(x +1)
| | | !
| | | |
— -+ - S -+ - 4 -+ -~ =+ = -
| | | |
| I |
y=x7 y=x y=x y=1-x*
| | I !
| | I |
il i e B R R
| | | |
| | I |
y=x" y = (x-1)"? y=x" y=05x"+2
| | I |
| | | |
i i e B R T




F2 Graphs: Parameter Exploration

EX. Draw graphs of lines (linear functions)
with various slopes, on the same axis. In other
words, draw the graphs of y = mx, where the
parameter m (slope) includes -2, -1, -1/2, 0, 1/2,
1, 2.

Where do all these graphs intersect?

EX. Draw graphs of exponential functions
with various positive bases, on the same axis.
In other words, draw the graphs of y = b,
where the parameter b (base) includes 0.2, 0.5,
1,1.5,2,2.5,3.

Note that all values of x are possible here,
but the y-coordinate will always be positive.
Where do these graphs all intersect?
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EX. Draw graphs of positive power functions,
with various powers, on the same axis. In
other words, draw the graphs of y = x*, where
the parameter p (power) includes 0.2, 0.5, 1,
1.5,2,2.5, 3.

Only include positive values of x, since gener-
al powers of x are undefined for negative val-
ues of x. Where do all these graphs intersect?




N3 Numeracy: Powers of 2, powers of 10.

Instructions: This page can be a reference, as you learn your powers of
two and powers of ten. You don't need to memorize all your powers of
2, but it is useful to have some particular "landmarks" in mind as you
reason about numbers, doublings, etc.

EX. Fill out the following columns with powers of two and powers of
ten. Work by hand, when possible, and calculator when needed.

Powers of 2 show up when we consider dou-  Powers of 10 are fundamental to our base-ten
bling populations. They are also importantin ~ number system (as we have 10 fingers). Mem-
"information theory," where the basic unit of orize your powers of 10, including thousands,
information is the bit. A bit of memory can millions, and billions, and the corresponding

store the answer to one yes/no question. Abit fractions (1/1000, etc.), and the prefixes: giga,
requires one electronic "on/off" switch in your  mega, kilo, milli, micro, and nano.
computer. A byte is 8 bits (eight switches).

A gigaton (GT) is 1 bil-
A gigabyte (GB), is 2% lion tons. 1 ton equals
230— bytes, ~1 billion bytes. 10°= 2000 Ibs.
A megawatt (MW)is 1
0 Amegabyte (MB), is 2* ‘ million watts.
290= bytes, ~1 million bytes. 106=
10 Akilobyte (KB) is 21 3 A kilometer (km) is
2= bytes, ~1000 bytes. 10°= 1000 meters, (walk from
McHenry to Porter.)
28—
10°=
i
10'=10
23—
22 Standard (S.I.) units
= include...
212 Length: 1 meter (a bit
10° over 3 feet long)
20— B
Time: 1 second
2= Mass: 1 gram. (The
weight of a dollar bill.)
D2
A milligram (mg) is
2-10_ 103= 1/1000 of a gram.
A microsecond (us)
9-20_ 10°= is one millionth of a
A nanometer (nm) is
9-30_ 109= one billionth of a meter.

A picogram (pm) is one
1012= trillionth of a gram.



Log1 Common logarithms (base 10).

Logarithms were invented by the Scottish mathematician John Napier
in 1614, and his son published his "Wonderful Canon of Logarithms"
in 1620, along with Henry Briggs' "common" or "base 10" logarithms.
Logarithms seem to delight scientists as much as they torment stu-
dents. As you become a scientist, perhaps you will accept, and even
delight, in logarithms. We will see them often in this class, and there
are many ways to get started.

We begin by thinking of logarithms as a way to inquire about expo-
nents. Every question about logarithms has an equivalent question
about exponents... and those you may be able to answer!

Logarithms base 10 relate to questions about exponents with base 10.
For example, consider the following equivalent questions.

What is log, (100)? 10 to what power equals 100?
What is log, (1/1000)? 10 to what power equals 1/1000?
What is log, (50)? 10 to what power equals 50?

EX. Answer the questions on the right, using the previous page for ref-
erence. The only difficult one is the last (10 to what power equals 50?).
For that, try to approximate using your table, or a graphing tool.

Even if you have never seen logarithms, you can now fill in the blanks
on the left! The answers to the questions on the right are exactly the
answers to the questions on the left -- that's what logarithms are!

EX. Continue by filling in the missing question on right, answer the
question on the right, and use this to answer the question on the left.

What is log, (10)? 10 to ?
What is log, (1)? 10 to ?
What is log, (0.01)? 10 to ?
What is log, (1034)? 10 to ?
What is log, (100%)? 10 to ?
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D1 The derivative: from AP/At to dP/dt.

When a quantity P is changing, we describe its rate of change by focus-
ing on an interval of time: a starting time and an ending time. The rate
of change during that time interval is the quotient AP/At. Here AP is
the amount that P changes, and At is the amount that t changes, during
that time interval.

EX. Let P(t) = 100 t'/2. Fill out the table below with values of P(t).
Then compute AP/ At on the time intervals below.

On the time interval [1,1.1],

At = and the rate of change is AP/ At =
Time (t) [ P =100 t'/2
1 100 On the time interval [1,1.01],
1.001
o1 At = and the rate of change is AP/At =
1.1 On the time interval [1,1.001],

At = and the rate of change is AP/ At =

EX. What do notice about the rates of change AP /At on the intervals
you considered above? Look at the three values you've found!

EX. Now graph the function P(t) = 100 t'/2 in Desmos. Use the Graph

m-(t—1) + 100

Q 1
Settings button (it looks like a wrench), to change the view window & P = 10077
so that the horizontal axis displays a range between 0 and 2, and the O (1,100)
vertical axis displays a range between 0 and 150. Add a marked point

at (1,100). Then add the graph of the line through the marked point, Y 1) =
having slope m: L(t) = m(t-1) + 100. Use Desmos to add a slider for the © m=0

parameter (slope) m, and click this slider to allow m to slide between 0 os
and 100. The result should look like what you see here in the margin.

Using the slider, what slope "m" makes the line L(t) tangent to the
graph of P(t) at the marked point?

EX. Relate your answers in the previous two questions. Why are they
related? How does this number capture the slope of the curve P(t)?
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D2 Estimating the derivative.

The derivative dP/dt refers to the instantaneous rate of change. For
an instantaneous rate of change, we use a time interval with starting

time t and ending time t + dt; the symbol dt stands for a "time differen-

tial," an infinitesimally small unit of time (just an instant!).

To estimate the derivative dP/dt at time t, we can compute AP /At on
the time interval [t, t + At], when At is very very small.

Example: Suppose P(t) = 2t>. Estimate dP/dt when t=3.

Solution: We choose the very very small At =0.0001. Then we have
P(3)=2-3*=18.

P(3 + At) = P(3.0001) = 2 - (3.0001)* = 18.0012.

On the time interval [3, 3.0001], AP/ At =0.0012/0.0001 = 12.

Hence dP/dt = 12 when t=3.

In the following exercises, use this technique to estimate the derivative
dP/dt at various times. Write your work just as it is written in the ex-

ample above. Use a different At (your choice!) in each problem.

EX. Suppose P(t) =100 t'/2. Estimate dP/dt when t=4.

EX. Suppose P(t) =2t + 1. Estimate dP/dt when t=7.

EX. Suppose P(t) = 70 t*°. Estimate dP/dt when t=9.

A confusing thing is
this: the rate of change
AP/ At really depends
on the choice of a start
time and end time.

The derivative dP/dt
depends on the choice
of a start time; the end-
time is just a tiny instant
after the start time.
Making this precise re-
quires the mathematics
of limits.



RT1 Redwood tree growth: power function

A redwood tree grows from a sapling into a giant over hundreds, and
sometimes thousands, of years.

EX. On the right is a typical cross section of a redwood tree. Note that
each tree ring indicates one year of time elapsed. Use this image to

estimate the rate of growth of the radius of the tree.

AR/ At = meters per year. (Convert cm to m!)

EX. Now, use your estimate and a linear function to model the radius
of the redwood tree as a function of time.

T T T T 7
0 10 20 30 40 50
R(t) = meters. (centimeters)

EX. The height of the redwood tree does not grow linearly over time.
Rather, the height of a redwood tree is modeled by the power function.

H(t) = 3 t*° meters.

EX. Sketch a time series of the height of the redwood tree below.

EX. Assuming the tree is a cylinder, what is the volume V of the tree as
a function of time? Use the approximation nt=3.14.

V(t) = m?®. (Note m® = cubic meters)

EX. The density of a redwood tree is approximately 450 kg/m’. What A density of 450 kg/

is the mass M of the tree as a function of time? m?means that each
cubic meter of redwood
M(t) = kg. weighs 450 kilograms.

EX. Which has more mass: a single 100-year old tree or two 80-year-
old trees? Explain by computing their masses.
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RT2 Redwood tree growth: rates of change

Now we look at the growth rate of the redwood tree. We have already
modeled the linear growth of the radius of the tree.

EX. Estimate the growth rates dH/dt when t=1, when t=10, and when
t=100, using the function H(t) = 3 t* from the previous page.

At 1 year old, the tree height is growing at a rate of m/yr.
At 10 years old, the tree height is growing at a rate of m/yr.
At 100 years old, the tree height is growing at a rate of m/yr.

To understand how the tree interacts with its environment, it is import-
ant to understand how the mass of the tree changes from year to year—
this is its biomass growth rate.

EX. Estimate how fast the mass of the tree is increasing, dM/dt, when
t=1, t=10, and when t=100, using the function M(t) you found on the
previous page.

At 1 year old, the tree mass is growing at a rate of kg/yr.
At 10 years old, the tree mass is growing at a rate of kg/yr.
At 100 years old, the tree mass is growing at a rate of kg/yr.

EX. Which is growing faster, in terms of mass per year: a single
100-year-old tree or two 80-year-old trees? Explain by computing their
growth rates in kg/year.

EX. Note that biomass growth requires corresponding inputs of sun-
light, water, and soil nutrients. What advantages are there for a forest
of many younger trees versus a forest of fewer older trees?
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D3 The derivative of a power function

The first big discovery of calculus appeared in 1684:
Potentie dX2,2qu, a, Xa-1dx

In a traditional calculus book, this is presented as the Power Rule.
Power Rule: If P(t) = t*, then dP/dt = n t™.

EX. Let P(t) = t*. Estimate dP/dt when t=2, using the method of the
previous pages. Compare this to the exact result you get by using the
Power Rule above.

EX. Let P(t) = 100 t. Estimate dP/dt when t=2, using the method of
the previous page. What do you think the exact formula should be for
dP/dt. What happens to the number 100?

EX. Let P(t) = 100 + £. Estimate dP/dt when t=2, using the method of
the previous page. What do you think the exact formula should be for
dP/dt. What happens to the number 100?

EX. Let P(t) = 100 t'/2. Use the power rule, and what you have learned
above to find a formula for dP/dt. Use this to find the exact value of
dP/dt when t=4.
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Liebniz wrote this

rule (in Latin, in 1684).
"aequ" means "equals.”
We might write it as

dX® =a X1 dx
Dividing by dx,
dX® / dx =a X*.

That's the power rule.

Rule: If you scale a
function by multiplying
by a constant C, then
the derivative is scaled
by the same constant C.
(Vertical scaling scales
the slope too!)

Rule: If you vertical-
ly shift a function by
adding a constant C,
then the derivative is
the same as the origi-
nal unshifted function.
(Vertical shifting leaves
slope unchanged!)

The power rule holds
for every constant real
power n, not just whole
number powers. Here
the power is n=1/2,
which is fine!



D4 Derivative drills: Linear functions and power func-

Alinear function has the form P(t) = mt + b. The parameter m is called
the slope, and b is called the y-intercept. For linear functions, dP/dt is
the rate of change, i.e., the slope, and it is a constant.

Example: If P(t) = 3t + 2, then dP/dt = 3.

EX. Find dP/dt for the linear functions P(t) below. All letters besides P
and t are constants. Hint: dP/dt is the slope of the line.

P(t)=5t-1 dP/dt= P(t) =-t dP/dt=
P(t)=t+10 dP/dt= P(t) =kt dP/dt=
P(t) =2t dP/dt= P(t) =3t-2t dP/dt=
P(t)=-3t+2 dP/dt= P(t)=b+3t+1 dP/dt=
P(t)=10-t dP/dt= P(t)=3 dP/dt=

A power function has the form P(t) = t*. The parameter a is called the
power or the exponent. Power functions are often scaled, and some-
times vertically shifted, in the form P(t) = C t* + b. In this form, Cis
the (vertical) scaling factor, and b is the y-intercept. For such a power
function, the derivative is given by dP/dt = C a t*.

Example: If P(t) = t°¢, then dP/dt = 0.6 t4.
Example: If P(t) = 3t + 5, then dP/dt = 6t.

EX. Find dP/dt for the power functions P(t) below. All letters besides P
and t are constants.

P(t) = t° dpP/dt = P(t) = -Ct dP/dt =
P(t)=1-t° dpP/dt = P(t)=m £ dpP/dt =
P(t) =t! dP/dt = P(t)=kt*S +r dP/dt =
P(t) =415 dpP/dt = P(t) =t~ dpP/dt =
P(t)=1/t dpP/dt = P(t) = t° dpP/dt =

EX. What is another common way of writing P(t) = t'? What is anoth-
er way of writing P(t) =4t%?



PK1 Pharmacokinetics: Ethanol (Ot order)

Ethanol is the molecule that makes alcoholic beverages alcoholic. A
typical 120z beer contains about 15 grams of ethanol. If you drink such
a beverage, the ethanol molecules quickly distribute throughout your
bloodstream. When they pass by the liver, enzymes work at a steady
rate to convert ethanol into acetaldehyde (an oxidation reaction). A
typical rate of conversion is about 10 grams/hour.

EX. Consider a person who drinks two 120z beers during a one hour
period of time. Let E(t) be the amount of ethanol in their bloodstream,
as a function of time. Draw a time-series plot below, displaying your
expectations for E(t) during a 5-hour period beginning at the moment
beer-consumption begins. Draw and label your own axes for this plot.
(Use a straightedge!)

EX. What assumptions did you make in order to create your expecta-
tions for E(t)?

EX. The derivative dE/dt represents the rate of change of ethanol in
the bloodstream, measured in grams/hour. Describe dE/dt during the
5-hour period you have graphed in one or two sentences with precise
numbers.

Beer varies consider-
ably. A typical beer here
means 5% ABV (alcohol
by volume). Budlight is
4.2% ABV. An imperial
stout is about 9% ABV.



PK2 Pharmacokinetics: Gentamicin (15t order)

Gentamicin is an antibiotic that is provided via injection in hospital
settings. It does not undergo significant chemical reactions. After
injection, gentamicin is gradually cleared from the bloodstream by the
kidneys. Simply put, a patient injected with gentamicin molecules will
pee out gentamicin molecules a little while later.

Load the Gentamicin Dosage Simulator now. Your goal is to determine
the best protocol for administering gentamicin to patients. You can ad-
just the dosage (how much is injected), the frequency (how often injec-
tions are given), and the infusion time (how quickly the injections are
given). The green range indicates an ideal therapeutic window, where
the gentamicin concentration is between 4 and 10 mg/L. The red range
indicates the dangerous window where toxic side effects are more like-
ly (gentamicin can cause damage to the kidneys and inner ear).

EX. Let G(t) be the concentration of gentamicin in the bloodstream at
time t. What is happening to the patient when dG/dt positive? When
dG/dtis negative?

EX. Experiment with dosage, frequency, and infusion, to find a proto-
col which maximizes the time in the therapeutic window and minimiz-
es the time in the toxic window. Keep the half-life fixed at 3 hours for
now. What protocol did you find best?

Dosage: Frequency: Infusion Time:

Within your protocol, how much time per day is the patient within the
therapeutic window. Within the toxic window?

Therapeutic duration: Toxic duration:
EX. Some patients may have renal disease, and so their kidneys do not
filter their blood as quickly. For such patients, the half-life might dou-

ble to 6 hours. How does this effect your protocol? How should you
change the protocol to help such a patient?
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Exp1 Exponential growth of a population

Imagine a population of well-fed bacteria in a dish. Let t denote time,
measured in minutes, and P(t) the population at time t. Assume that
P(0) = 1000. There are 1000 bacteria when the clock starts.

Bacteria doubling time
varies by species and by
environmental con-
dition. 20 minutes is
typical for E. coli in the
Suppose that every 20 minutes, half of the bacteria undergo binary lab.

fission. For example, since P(0) = 1000, P(20) = 1000 + 500 = 1500. We

study this highly idealized model below.

Binary fission is a type of asexual reproduction, by which a single bac-
terium duplicates its DNA, elongates, and splits into two new bacteria.

EX. Create a table on the right, which displays
the population of bacteria for the first hour,
according to the model above. Your table
should include time-points for 0, 20, 40, and 60
minutes, and should be labeled with units.

EX. How is P(20) related to P(0)? How is
P(40) related to P(20)? How is P(60) related to
P(40)? Write one answer for all of these ques-
tions, using a formula.

EX. At t=120, the population of bacteria can be
expressed using a formula like

P(120) = 1000 ( )—

Using the previous question, what is the base

and whole number exponent? Remember that
exponentiation is repeated multiplication.

EX. Write the exponential function which
describes the population growth in this model.

P(t) = ( )

EX. Sketch the graph the exponential func-
tion P(t), for the first 60 minutes, in the box to
the right. Label your axes, as in the Fig 6. of
Monod. Mark the data points that you includ-
ed in your table above.




Exp2 Doubling times

First, check your answers from the previous page to make sure that

you have the correct equation for the population. Rewrite this below.

P(t) = _)—

Graph this function on Desmos, changing the axes to focus on the first

three hours of time. The result should look something like below.

c
e
©
< 20000
o
o
o
10000
0 50 100 150
EX. At what times do you find the population equal to 4000? 8000? No logarithms yet,

10000? 20000? To answer these questions, zoom in with Desmos to
approximate to the nearest minute.

P( ) = 4000 P( ) = 8000

P( ) = 10000 P( ) = 20000

EX. How long does it take for the population to double from 4000 to

8000? From 10000 to 20000? What do you notice?

EX. Now, use this doubling-time to create a new form for the expo-

nential function P(t), where the base is 2.

)

P(t) = L2
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Exp3 Exponential functions

An exponential function is a function F(t) having the form
F(t)=Cbt

Here we use t as our independent variable, as it often represents time.
The letters C and b are parameters. We always assume the base "b" to
be positive, since powers of negative numbers are not always real num-
bers. We usually assume C to be positive too.

EX. Graph the exponential function F(t) = C bt in Desmos, using sliders
for b and C. Write a few sentences, to describe how the parameters b
and C affect the shape of the exponential function. In particular, what
happens when C crosses the line from positive to negative? What
happens when b (always positive) crosses the line from less than 1 to
greater than 1?

You might be asked to
write this sentence on
a test!

/

Exponential functions are proportional to their rates of change.

The remarkable fact about exponential functions is the following;:

EX. Repeat the above sentence 10 times each day for the next week.

EX. To understand this, consider the exponential function F(t) = 10~ Use the techniques
Estimate dF/dt when t=0, when t=1, and when t=2. Use the same tiny from page D2I 'Estimat-
value of At in all your estimates. Use this to complete the table below. ing the Derivative.

F(t)=10t| dF/dt

N |—=| O |~

EX. Now use the table to complete the following sentence.

If F(t) = 10t, then dF/dt = - 108

This says that the rate of change dF/dt is proportional to the function
E(t). You have found the constant of proportionality!



Exp4 Derivatives of exponential functions

EX. Working with a group, find the proportionality constants, relating  An exponential function

each of the exponential functions below to its derivative. is a function of the form

Cbt, where C and b are
constants, and b>0.

If F(t) =2, then dF/dt = - F(t)
2t=(0.5). Thatis why

At . . 2'is an exponential
If F(t) = 2%, then dF /dt = F(t) i
If F(t) =5 -3, then dF/dt = - F(t)

2t/10:(21/10)t:(1.072)t‘
If F(t) = 2¥1° then dF/dt = - F(t) That is why 271" is an

exponential function.

When FE(t) is a function, the derivative dF/dt is also a function. We have now seen how this
works for three sorts of functions, so we review this now.

EX. On the left, graph the given functions. On the right, find and graph their derivatives.

Linear: L(t)=2t+1 dL/dt=
3
— —
o}
t t
Quadratic: Q(t) =0.5t2 dQ/dt=
3
o o
o}
t t
Exponential: F(t) =2 dF/dt = 2t
3
= =
o
t t
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Log2 Exponents and logarithms, + and x.

Exponents turn addition into multiplication.
Example: 10¢% =10° x 10

Why? Because exponents represent repeated
multiplication. For example,

10649 =10"=10 x 10 x 10 x 10 x 10 x 10 x 10
and
10° x 10* = (10 x 10 x 10) x (10 x 10 x 10 x 10).

The associative property of multiplication
guarantees that these are the same.

The general rule is:

b(x+y) — bx by
for all numbers x,y, and all positive numbers b.

A consequence is that exponents turn subtrac-
tion into division. For example,
1084 = 10° +10* = 1000/10000 = 0.1.

Why are exponents of 1/2 related to square
roots? Well,

x(1/2), 5(1/2) = 5 (1/2+1/2) — 51 — 5.
So x/? must be a square root of x. We take the
positive square root, e.g., 9/? = 3 not -3.

EX. Transform addition into multiplication, or
vice-versa, to re-express the following. An-
swers may vary, but should use one of the rule
above. Do NOT give a numerical "answer.

100+ = (Do not write 100000!)

20@+2) = (Do not write 16!)

3835

Blx+y) —

21+ —

2(x—7) —

274 =2

101/2106/2 = (Do not write 100!)

Logarithms turn multiplication into addition.
log, (1000x10000) = log, ,(1000) + log, (10000).

EX. Why? Explain how the above equality is
related to the exponents on the left.

The common logarithm log, (x) answers the
question "10 to what power equals x?"

For a general base b, the base-b logarithm
log, (x) answers the question "b to what power
equals x?" For example, log, (8) = 3, because 2

to the 3 power equals 8.

A general rule, for all bases, is

log,(uv) = log,(u) + log,(v),
for all positive numbers 1,0, and b.

EX. Transform the following logarithms using
the rules above.

log,,(100x1000)=
log,(0.5)+log,(2)=
log,(x?)=

log, (xyz)=

log,(2*y)=

log, (100°)=

log,(3%) -log,(9)=____

log,(3x) - log,(9x)=



Log3 Changing bases.

We introduce two more useful formulas involving logarithms. Instead
of memorizing them, we practice using them here.

The first describes the logarithm of an exponent.

log (b*) = x log (b). (a and b must be positive)

Example: log,(3") = tlog,(3) = 1.585 t, using a calculator in the last step.
The second allows us to change bases of an exponent.
ax = blos@x, (a and b must be positive)

Example: 1.5 =289t =205% yging a calculator in the last step.

This last formula shows that an exponential function with one base can
be rewritten as an exponential function with another base! For exam-
ple, any exponential function to be expressed using powers of 2.

at = log@t, (a and b must be positive)
EX. Use a calculator to fill in the blanks with a number, rounding to

three significant figures. Notice that logarithms transform exponential
functions into linear functions!

log,(3") = t
log(2)=__
log 2)=___ 't

log,(099=___ 't
log,(2)=__
log,(0.1*)=__ t

EX. Fill in the blanks with a number to express the following exponen-
tial functions using a different base. Use three significant figures.

2t=15—"-"

10t =2——-".

4t=2 t.  (No calculator should be needed!)
09t=2——~"

0.5'=10——-"

2% =3—-1,

55

If your calculator out-
puts 1.2345, then round-
ing to three significant
figures would give 1.23.
More examples of such
rounding are below,
with the three signifi-
cant figures in boldface.

0.0247158 =» 0.0247
12.389 = 12.4
0.19234 = 0.192
1059.9 = 1060



Exp5 Exponential growth: 3 characterizations.

Let P(t) be a population that grows over time. When we say this
growth is exponential, we mean that P(t) is described by a function:

P(t)=Chbt (Here b and C are positive parameters)
Exponential growth has other characteristics.
1. Exponential growth has a steady doubling-time... every d units of
time, the population will double. We can use doubling-time to express
population growth as an exponential function where the base is 2.

P(t) = C2vd,

2. If we plot the logarithm of population, as a function of time, the
resulting plot will be linear. For example, if we use log-base-2, we have

log,(P(t) ) =1og,(C) + t/d.
This describes a line with slope 1/d and intercept log,(C).
3. When P(t) grows exponentially, its rate of growth also grows expo-
nentially, with the same base. If P(t) = Cb', then dP/dt =D b, for some
other constant D. As a result, the rate of population growth is propor-
tional to the population itself.

dP/dt=k P
This number k is called the first-order growth rate for the population,
and we are going to analyze it here. But first, we introduce a bit of
new and important notation. The notation dP/dt is based on Lieb-
niz's "differentials" and it reflects the change in population divided by
the change in time, which is a rate of change. Around 1750, Lagrange
introduced the notation P'(t) for this same thing.

P'(t) means dP/dt (the rate of population change) at time t.
To practice a bit, fill in the following.
EX. Find the following derivatives, using "prime" notation.

If F(t) =t} then F'(t) =

IfL(t)=5-4t, thenL'(t) =

If P(t) = 10%, then P'(t) = . (Refer to an old exercise!)

Remember exponential functions are proportional to their rates of
change. So if P(t) is an exponential function, then P'(t) = k P(t).

EX. Estimate this first order growth rate k, when P(t) = 10

k ~

Now is a good time to
go back to the 1st page
of this lab, and read the
passage by Neidhardt!

We say "P prime of t"
when reading the ex-
pression P'(t).

That's why it's called
"prime" notation.



Expé The number e, and the equation P' = P.

Desmos is very good at graphing derivatives, and we will use it to
answer the following question: For which exponential function is the
first order growth rate equal to 1? In other words, what exponential
function P(t) has the property that P'(t) = P(t)?

Using Desmos, graph the function P(t) = b'. Add the slider for b, allow-
ing the parameter b to vary between 0.1 and 5. Your input should look
something like the screenshot below.

Graph the derivative of this function on the same plot, by adding a new
plot with equation y=P'(t). Finally, study their ratio by adding a new
plot with equation y=P'(t)/P(t). If you have entered things correctly,
then the final P'(t)/P(t) plot should look like a flat horizontal line.

EX. If b=2, then what is P'(t)/P(t)? Find your answer with three signif-
icant digits by zooming in with Desmos, or by looking back for a good
estimate of dP/dt. Use this to fill in the blank below.

If P(t) = 2, then P'(t) = -2t

EX. Find a value of b, for which P'(t)/P(t) is as close as possible to 1.
You may have to adjust your slider settings, e.g., tightening the range
of possible b values, and using steps of 0.1, 0.01, etc. Use this to fill in
the blank below with three significant digits.

If P(t) = t then P'(t) = P(t).

Congratulations... you have estimated the very important number
called "e". Look up the number e on your computer and write the re-
sult below with ten significant digits.

e is approximately equal to

"n_n

The number "e" is very important for exponential functions. More spe-

n_n

cifically, "e" is that unique number for which
If P(t) = €', then P'(t) = P(t).
The population growth rate is equal to the population itself.

The first order growth rate is 1.

57

If you're trapped on a
desert island, you can
estimate e using the
following process:

Start with 1.

Add 1/(1).

Add 1/(1-2).
Add 1/(1-2:3).
Add 1/(1-2:3-4).
Add 1/(1-2:3:4'5).
Etc..

EX. What do you get
after these five steps?




Exp7 The natural logarithm: Definition and drill

We have seen logarithms base 2 and base 10, as answers to questions e is just a number. Itis
about exponents with base 2 and 10. The natural logarithm is the log-  approximately 2.718.
arithm base e, which answers questions about exponents with base e.

The natural logarithm could be written log_but it is usually written In.

Below are three natural logarithms and the corresponding questions.

What is In(e?)? e to what power equals e??
Whatis In(1/e)? e to what power equals 1/€?
What is In(100)? e to what power equals 100?

EX. Use what you know about exponents (not a calculator!) to answer
the questions in the first two rows above. Use a calculator (or Google
"In(100)") to answer the questions in the last row.

EX. What is In(1)? Explain why, using properties of exponents.

EX. Use a calculator to compute In(100.0001). Use this to estimate
In'(100). Here In' denotes the derivative of the natural logarithm func-
tion. Hint: In'(100) is a pretty simple-looking number.

In(100) =

In(101) =

In(100.1) =

In'(100) =

The natural logarithm can be used to express general exponents using
base e. The following formula is most useful for this purpose.

bt — eln(b) t.

EX. Use this formula to express exponents in base e. Express natural
logarithms with three significant figures.

100 = (0.5) =

2t — 3t+] —
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Exp8 Exponential functions in natural form

Every exponential function can be written in natural form F(t) = C e*.
The two parameters are:

C is equal to F(0), also called the y-intercept.
k is the first order growth rate.

The convenience of this form is that the rate of change F'(t) = k-F(t).
EX. In the following examples of exponential functions, convert the
function into natural form and compute its derivative. Simplify all
constants, using two significant digits.

Example: F(t) =100 - (1.5).

Solution: F(t) =100 - (1.5)t =100 et =100 e®*'t. This is the natural
form (with e as the base). The derivative is given by

F'(t) =0.41 - F(t) = 0.41 - 100 e%4t =41 e041,

EX. F(t) =20- (2)t EX. F(t) = 5000 (0.5)t.
Natural form: Natural form:
Derivative: Derivative:

EX. C(t) is the amount of Carbon-14 in a sample of seeds placed in a
jar today. C(0) = 20 ng (nanograms), meaning there are 20 nanograms
of this carbon isotope. Over time, Carbon-14 decays into Nitrogen-14.
As aresult, C(t) decays exponentially, with half-life 5700 years. This
means that C(5700) = 10 and C(11400) = 5. In other words, in 5700
years, there will only be 10 ng of Carbon-14 in our sample.

Express C(t) as an exponential function of t with base 0.5.

C(t) = (0.5)

Now express C(t) in natural form.
Ct) = e——t

What is C'(0) and what does it mean as a physical rate of change?

Carbon-14 has 6 protons
and 8 neutrons in its
nucleus.

Nitrogen-14 has 7 pro-
tons and 7 neutrons in
its nucleus.

In this kind of decay,
called (3-decay, a neu-
tron (n) decays into a
proton (p), sending off
an electron (e), and an
antineutrino (V) in the
process.



Fit1 Fitting a model with linear regression.

We have seen three kinds of growth in this chapter: linear growth,
power function growth, and exponential growth. Sometimes we en-
counter data, and we wonder what sort of growth it exhibits. Graphi-
cal methods, especially log-scaling axes, can be useful for this purpose.
Load the Linear regression with Log scaling tool for the following. Simple
linear regression is the process of finding a line that best fits data.

Lines are often recognizable by eye, and we can draw a "best-fit" line
y=mx+b to approximate data. Here m is the slope, and b is the y-inter-

cept. We use a statistic called R? to evaluate the quality of the fit.

EX. Click the Clear Data button, then enter the following data.

X 1 2
Y 2 4.2

25 |5 3 4
51 [9.1 7.8

45 |6 2 6
91 |11 39 122

Click "Fit Linear Model" to find the line that best approximates the
data. Report your results below.
Y=

X+ , with R? =

Now we apply these techniques to some real data!

DNA has four nucleotides, abbreviated by the letters A, T, C, and G.

An A on one strand is matched with a T on the other strand, and a C

on one strand is matched with a G on the other strand. Such matched
pairs are called base pairs (bp). The GC-content of DNA is the percent-
age of the nucleotides which are C or G. The GC-content affects the
melting temperature T , defined as the temperature at which half of the
nucleotides separate from each other. This is very important when se-
quencing DNA, and regions of DNA with very high or low GC-content
can be difficult to sequence reliably.

The following table gives the GC-content (GC%) and melting tempera-
ture T_ for ten different chunks of human DNA, about 50000 bp each.

GC% |10% |10% |20% |20% |30% |30% |40% |40% |50% |50%
T COl62 |59 |65 |66 |70 |69 |73 |74 |78 |77

EX. Use the Linear regression with Log scaling tool to find the best linear
model of melting temperature as a function of GC-content. What is the
R? statistic?

T = with R? =

m

GC % + ,
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The statistic R?is called
the coefficient of deter-
mination. When R? =
1.0, the line perfectly fits
the data. R?is a number
between 0.0 and 1.0,
and it answers the ques-
tion: "How much of the
variation of the data is
explained by the linear
model?"

The following 5bp long
chunk of DNA has
GC-content 40%.

ATGCT

(NN

TACGA

The GC pairs are stuck
together with 3 hydro-
gen bonds, and the AT
pairs are stuck together
with 2 hydrogen bonds.
It takes more heat
energy to break the GC
pairs.

Data on the left is
adapted from The
Human Genome Melting
Map by Liu et al,, in
PLOS Computational
Biology, May 2007.



Fit2 Linear regression after log scaling.

If y is an exponential function of x, having the form y = C e*, then the
logarithm of y will be related linearly to x. If y = C e, then In(y) = kx +
In(C). Or we can go the other way too.

If In(y) = mx + b, theny = e° - e™.

EX. Click the Clear Data button, then enter the following data.

X 20 40 60 80 100 [ 120 .
This data should re-
Y 1000 |1480 |2240 |[3300 |[5000 |7100 mind you of the ex-
ponential growth of a
population!

Click "Fit Linear Model" to find the line that best approximates the
data. Report your results below.

Y = X+ , with R? =

EX. Now select Logarithm Base: Natural (base e), and press the button
to change the y-axis scale from linear to log. Then click the "Fit Linear
Model" button to find the line that best approximates the plot.

In(Y) = X+ , with R? =

EX. Use this to find the exponential function that best describes the
relationship between X and Y.

Y= e X
EX. In what way does the exponential function fit the data better than

the linear function?

If y is a power function of x, having the form y = C x?, then the loga-
rithm of y will be related linearly to the logarithm of x. If y = C x?, then
In(y) = p In(x) + In(C). Or we can go the other way too.

If In(y) = m In(x) + b, then y = e° -x™.

EX. Click the Clear Data button, then enter the following data.

X 1 3 4 0.5 25 1.2
Y 3 25 50 076 |19 4.2

Now change both y-axis and x-axis from linear to log (base e). Click
the "Fit Linear Model" mutton. Use the results to find a power function
that best fits the data.

Y = X
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Fit3 Modeling power function growth

Along-standing question in physiology is the relationship between the
mass of organisms (especially endotherms like birds and mammals)
and their metabolic rates. The data table here is extracted from a 1932
paper of Max Kleiber.

Animal Weight (kilograms) | Cals./day per animal
Steer 679 8274
Steer 342 6255
Cow 388 6421
Man 64.1 1632
Woman 56.5 1349
Sheep 45.6 1219
Male dog 15.5 525
Female dog 11.6 443
Hen 1.96 106
Pigeon 0.300 30.8
Male rat 0.226 25.5
Female rat 0.173 20.2
Ring dove 0.150 19.5

EX. Select 10 from the 13 animals above in a biologically appropriate
way. How did you make your selection?

EX. Use the Linear regression with Log scaling tool to plot these 10 data

points, with weight W (kilograms) on the horizontal axis and metabolic

rate MR (cals/day) on the vertical axis. Describe this relationship in
one sentence.

EX. Click the Log(X) and Log(Y) buttons to study the relationship be-
tween logarithms. Use natural logarithms (In). Report the linear func-
tion which best models this relationship, together with the R? statistic.
with R? =

In(MR) = In(W) +

EX. This suggests that metabolic rate MR is related to weight W ac-
cording to a power law. What is the power law?

MR = W—————

See Body Size and Metab-
olism, by Max Kleiber,
in Hilgardia: a Journal
of Agricultural Science,
January 1932. For a
more recent review,

see Allometric Scaling of
Mammalian Metabolism,
by White and Seymour,
in the Journal of Experi-
mental Biology, 2005.

Hint: the formula
In(y) = p In(x) + In(C)
is equivalent to the
formula

y=CxP.



Fit4 Modeling exponential decay

In this last data-fitting exercise, we consider the degradation of aspirin ~ The following data is
(acetylsalicylic acid). A study participant is given a 1000mg dose of fictional, but adapted
aspirin, and the plasma concentration of aspirin (the amount floating from Figure 3A of In-vi-
in the bloodstream) is measured at various intervals. The table in the vo disintegration and ab-

margin displays these concentrations over time. sorption of two fast-acting
aspirin tablet formulations

compared to ibuprofe
EX. The given data begins when the patient first ingests the aspirin tal:rllfts usinglphzrn{aZo—

tablet. To study the degradation of aspirin, which data points are most  scintigraphy, by Stevens

relevant and why? et al., in the Journal of
Drug Delivery Science,
2019.
Time | Aspirin
(min.) | Concentration
(ng/mL)
0 0
. . . . 15 9000
EX. Use the Linear regression with Log scaling tool to plot these most rel-
evant points. Let A(t) be the plasma concentration of aspirin at time t. 20 15000
Describe the line which best models the relationship between In(A(t)) 25 15000
and t. 30 |9000
In(A(D) = £+ , with R? = 0 700
50 5000
60 3100
70 2100
EX. Use this to model A(t) as an exponential function of t, in natural
80 1700
form (base e).
90 1600
At)=__ e——t 120|400
180 100
240 0

EX. If the same person receives a different dose, like 500mg or 2000mg,
which of the above numbers would you expect to be similar to the
1000mg dose? Why?

EX. What is the half-life of aspirin in this patient? In other words,
estimate how many minutes it takes for the plasma concentration of
aspirin to be reduced by 50%.
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MG1 Modeling growth: distinguishing three types.

EX. Complete each of the following sentences with "linear growth" or "power function growth"
or "exponential growth".

If dP/dt = 3, then P exhibits

If dP/dt = 2P, then P exhibits

If dP/dtis a power function, then P exhibits

If dP/dt is an exponential function, then P exhibits

If the rate of change of P is constant, then P exhibits

If P is proportional to its rate of change, then P exhibits

If P(t) = 3t% then P exhibits

If its time-series plot is a straight line, then P exhibits

If the time-series plot of In(P) is a straight line, then

P exhibits

If P(t) = e then P exhibits

If log, (P(t)) = 2 log,(t), then P exhibits

If P increases by 3 each year, then P exhibits

If P increases by 3% each year, then P exhibits

If In(P) increases by 2 each year, then P exhibits

If B is the volume of a balloon whose radius is given by R = 3t, then B exhibits




MG2 Modeling growth: reflections

EX. Choose one of the previous three models (GC-content and melting
temperature, metabolism and weight, aspirin concentration and time).
Evaluate the model, using the criteria for model evaluation from the
first lab. Which aspect of model evaluation does the R? statistic help

with?




z J

Figure 27, p.148, from "Elements of Physical Biology," by Alfred Lotka, published in 1925. These figures
show ten "fundamental types of equilibrium," in a system with two state variables. We have seen some
before in our study of sharks and tuna, and insulin and glucose.



| ABORATORY 3
EQUILIBRIUM

Equilibrium, at first glance, is a concept about not changing. A full
bathtub, a healthy person with body temperature 98.6°F, two symbiotic
species in harmony—these may all be systems in equilibrium. Writing
about equilibrium more than 100 years ago, Lotka introduces three
notions of equilibrium.

1. "...from the standpoint of kinetics, defining [equilibrium] as a
state in which certain velocities vanish..."

2. "..adynamic conception: Aequa libra, the poised balance, is
symbolic of a state in which forces are balanced, in which the
resultant force vanishes..."

3. "A third conception of equilibrium... is derived from a con-
sideration of energy relations. A system in dynamic equilibri-
um is found to be characterized by the attainment of a mini-
mum (or sometimes a maximum) of certain functions having
the dimensions of energy."

Equilibrium is not just about not moving (velocities vanishing). In
physics it is based on a balance of force, every push countered by a
pull, to keep things in balance. In a broad range of systems, equilib-
rium is characterized by the attainment of a minimum or maximum
energetic state.

The study of equilibrium, Lotka notes, is not the study of a single static
state in isolation... it is about the relationship between that state and
"nearby" states. Look at the diagrams A-] on the opposite page, which
display trajectories in various state spaces. Each diagram contains a
single equilibrium point. Can you find it? What happens "near" the
equilibrium point? How would you describe what happens in words?

EX. For one of the diagrams (A-]), redraw the diagram in the margin,

identify the equilibrium point with a bold star, and write a sentence
about what happens near the equilibrium point.
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From "Elements of
Physical Biology," by
Alfred Lotka, 1925, pp.
143-144.



LO1 Logistic growth: Growth and crowding

The marine bacterium Vibrio natriegens divides very rapidly. Under
optimal conditions, its population obeys the change equation,

P'=0.07P

Here P denotes the number of bacteria, and our unit of time is minutes.
Recall that P' (out-loud "P-prime") is our shorthand symbol for the
derivative dP/dt.

EX. Assume the similar "discrete" change equation AP/At=0.07 P,
where the time interval is At = 1 minute. Fill in the blank to describe
the population growth, according to this discrete-time model.

Each minute, the population increases by percent.

EX. Now), return to the original change equation P' = 0.07 P. There is an
exponential function which satisfies this equation, namely

P(t) = C 07t

Fill in the blank to describe the population growth according to the
function above (a continuous-time model).

Each minute, the population increases by percent.

We see that the continuous-time equation P' = 0.07 P and the dis-
crete-time equation AP /At = 0.07 P behave similarly, with a small
difference in rate of population growth. The per-minute growth rate
should be very close to the first-order growth rate 0.07.

Populations do not grow endlessly. A more realistic model incorpo-
rates not only the maximum division rate of the bacteria, but also a
negative effect of crowding — when organisms are too close to each
other, they can compete for resources or otherwise hurt each other,
slowing growth. The resulting change equation should look like

P' = [birth rate] P - [bad effects of crowding]

We understand the birth term (0.07 ). But what should the "bad ef-
fects of crowding" term look like? Crowding effects should get worse
as the population increases, but in what manner?

To explore the effects of crowding, load the Self-Interaction Simulator,
and start experimenting. In this simulator, organisms are randomly
placed in a dish and they start moving. They move for a second then
turn a random direction and move some more, etc. They bounce off
the walls of the dish, and you should see a little "firework" when they
hit each other.

See Eagon RG, Pseu-
domonas Natriegens, a
marine bacterium with

a generation time of less
than 10 minutes. J. Bac-
teriol 83 (1962).

The general rule for de-
rivatives of exponential
functions: If
P(t)=Ce',
then
P'(t) =k Ce-.

Note that P' =k P.



LO2 Logistic growth: Self-interactions

EX. Each "run" of the simulator should take 10 seconds. Use 10 runs
of the simulator, with different numbers of particles (between 2 and
50), and record the total number of "hits" that occur in each run of the
simulator. For example, if you run the simulator with 10 particles, you
should find between 5 and 12 hits. Record this data on the table on the
right.

EX. Enter this data into the Logistic Regression with Log Scaling tool,
using "number of particles" on the X-axis and "number of hits" on the
Y-axis. Graph In(Y) vs. In(X) in the Data Plotter, and copy the graph
below. Make sure to put small circles to represent your actual observa-
tions, draw the best-fit line, and report the slope and R? value.

In(Hits)

In(Population)

EX. Model the relationship between the "number of hits" and the pop-
ulation by a power function, using your best-fit line above.

H(P) = P——

If "hits" or "interactions" of organisms have a negative effect on the
population, then we expect the change equation to look like

P' = [birth rate] P - [interaction effect] P——

Here, fill in the blank with the same power of P. Your power should be
pretty close to 2... otherwise go back and check for mistakes!

The simplest model of constrained population growth is the logistic
model, when H(P) is proportional to P> The logistic growth model is

P'=BP - yP2

The parameter { is the birth rate (or growth rate), and the parameter

v describes the magnitude of the crowding effect. Even if this is not a
perfect model of population growth, we aim to understand it well. The
logistic model exhibits general phenomena of exponential growth with
constraint, and a stable equilibrium point.

Enter your data below.

Population | Hits

Slope of line:

R?=

This model was named
"logistique" and first
studied by Pierre-
Francois Verhulst in La
Loi D’ Accroissment de

la population (the Law

of Population Growth),
published in Nouveaux
Mémoires de I'Académie
Royale des Sciences et
Belles-Lettres de Brux-
elles (1845).



LO3 Logistic growth: The model

The logistic model pushes the boundary of what we may reasonably
compute by hand (though Verhulst did this back in the 1840s). We do a
bit by hand before using computational tools in what follows.

Consider our fast-dividing bacterium Vibrio natriegens from before,
but with negative self-interactions. They are modeled by the change
equation

AP /At =0.07 P - 0.000035 P2
Here we use discrete time, with interval At = 1 minute.

EX. If you have 1000 bacteria at time t=0, how many do you expect to
see after one minute, using the equation above? Use a calculator!

EX. If you have 3000 bacteria when the clock starts, how many bacteria
do you expect to see after one minute, according to the change equation
above? Use a calculator!

EX. Atsome values of P, the change equation tells us AP/At = 0. What
are these values of P? Divide your decimals with care, using a calcula-
tor if needed.

Return to the continuous-time logistic growth model, P' = BP - yP2.
When P' = 0, the population is at equilibrium, meaning that the rate of
population change is zero, i.e., the population does not change. We can
solve an equation to see when this happens.

P' =0 occurs when BP - yP? = 0;

This occurs when P(B-yP)=0;

This occurs when P = 0 or when p - YP=0;
This occurs when P = 0 or when 3 = yP;
This occurs when P =0 or when P = /.

When the population is between 0 and 8/, P' is positive and the pop-
ulation grows. When the population is bigger than /v, the negative
effects of interaction exceed the birth rate, and the population declines.
We graph these observations below on a phase portrait.

/
0 By Population
O S — — O ——— < =
Unstable Stable equilibrium

equilibrium



LO4 Logistic growth: Exploration of parameters
The logistic model of population growth has the form
P' = P - yP2. #)

The two parameters are the (net) birth rate p and the negative effect of
crowding y. Equilibrium is found when P' = 0, which occurs when

P=0orP=p/y
This second equilibrium is called the carrying capacity by ecologists,
since it represents the sweet spot at which the population is stably max-
imized; it is the largest number of organisms which the environment

can sustain.

EX. Let C = /v be the carrying capacity. Use algebra to show that the
equation (%) is equivalent to the equationP'=p P (1-P/C).

The logistic model is one of those very rare change equations where we

can describe trajectories with a formula. Such a formula is Itis difficult to derive
this formula; that would
Ceb(tt) ] ' be done in a class on
P(t) = T ofw Solves the change equation P' = BP(1 - P/C). differential equations.
We just take it on faith
Load the Logistic Growth Explorer. For now, you will be ignoring the here.

data table and time-shift t, and exploring the parameters § and C.

EX. What happens to the population P(t) as t grows large? How does
this relate to the carrying capacity C?

EX. What is the population at time zero, i.e., what is P(0)? Note that t
=0 here. Relate your answer to the parameter {3 or C.

EX. How does the birth-rate parameter 3 change the shape of the
graph of P(t)? Use the change equation to find a formula for P'(0)
involving 3 and C.

P'(0) =




Ph1 Phase portraits: Solving equations

If X' = f(X) is a change equation involving one quantity X, then equilib-
rium points can be found by answering the question: when is X' = 0?
Answering this question is the same as solving the equation £(X) = 0.
So we practice techniques for solving such equations here.

EX. Solve the following equations for X. Write your solution as a com-
plete "If... , then..." sentence, with all possible solutions listed with "or"
separating possibilities. Technique hints are in the margin.

Example: X*>-1=0.
Solution: If X2-1=0, then X =1 or X =-1. Technique: If X?=C,
then X = +vC.

Solve: (X - 3)(X-2)(X-1) = 0.

‘ Technique:
Solution: If abc = 0, then
a=0orb=0orc=0.

Solve: 7X (1-0.001 X)=0.

Solution: Technique: If ab =0,
thena=0o0rb=0.

Solve: kX (1-X/C)=0.

Technique: Same as
above, but with un-

Solution: known constants k and
C.

e X1 o

SO]VG. m = V.

. Technique: Ifa/b=0

Solution: then a = 0!

Solve: eX+X-2=0.
Technique:

Solution: Use Desmos! Report

three significant figures.

Solve: X2+1=0.

Technique: Not all

Solution: equations have solu-
tions!
Solve: SXAX) o
XA '
Solution: Mix techniques from

above.

glveziX(liL e"T =0.
) Technique: Powers of
Solution: positive numbers are
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Ph2 Phase portraits: Finding and classifying equilibria

EX. Now for each of the problems on the previous page, draw the
phase portrait. Your phase portrait should contain dots for every equi-
librium point (filled for stable, empty for unstable). Label dots by their
location (X-value). Draw arrows to show the direction of trajectories.

Example: X'=X?-1

>

I
— —F

X'=(X-3)(X-2)(X-1)

X'=7X(1-0.001 X).

X' =kX(1-X/CQ).

_X+1

X' ye

X'=eX+X-2.

X' =X*+1

3X(1-X)

X' = X3+1

X' = X(1 + e¥).




Ph3 Phase portrait: Allee effect

The phase portrait is a new sort of visualization, and here we demon-
strate how to generate and interpret the phase portrait. We consider a
population of mice, among which some have a genetic mutation. Let

Q(t) be the proportion of mice that possess this mutation.

So Q(t) represents (number of mice with mutation) / (number of mice).

EX. What are the possible values of Q(t)? Minimum? Maximum?

Q(t) must be between and

EX. The spread of this mutation in the population can be modeled
by the change equation Q' =2Q (1 - Q) (1 - 3Q). What values of Q are Algebra technique:

equilibrium points? If abc = 0, then
a=0orb=0orc=0.

Q' =0whenQ = orQ= orQ=
EX. Use Desmos to graph the function f(Q) = 2Q(1-Q)(1-3Q). Use this

to draw a graph of Q' vs. Q below. Note the domain of the function
when drawing the graph below.

0.5
o
Q 1.0
0.5
O O

EX. Now, on the phase portrait above, we have marked the two un-
stable equilibrium points for this change equation. Mark the stable
equilibrium point, and draw arrows to complete the portrait.

EX. If 10% of the mice have the mutation at t=0, then what proportion  Hint: Follow the trajec-

of the mice will have the mutation when t is large? tory in the phase por-
trait. Use your arrows!

EX. If 90% of the mice have the mutation at t=0, then what proportion
of the mice will have the mutation when t is large?
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Ph4 Phase portraits and trajectories (abstract)

The phase portrait below displays a relationship between X' and X.
Unstable equilibrium points are shown with an empty circle, and stable
equilibrium points are shown with a solid circle.

34_ —O=> — 00— —0
0.3 0.6 1

EX. Draw a graph displaying X (between 0 and 1) on the horizontal
axis and X' on the vertical axis. Be creative but consistent with the
above phase portrait.

0.5

=

-0.5

EX. If X(0) = 0.2, how will X(t) behave as t grows large?

EX. If X(0) = 0.5, how will X(t) behave as t grows large?

EX. If X(0) = 0.3, how will X(t) behave as t grows large? What if X(0)
gets "bumped" just a tiny bit to the left or right?

EX. Use the previous exercises to sketch time-series plots of X(t), using
the starting values X(0) =0, 0.2, 0.3, 0.4, 0.7,0.9, and 1.0.

1.00

030~ — — — — — — — — = = —

0.0 ? time (t)



Lac1 From the logistic model to the lac operon

2HEH
Fas

/"-‘
P i
P

GROWTH ©F DROSOPHILA
POPULATION

200
s
50
125
00
s /‘f
So —
F-2a
o

POPULATION

rgm—_;
Q 3 32 "’

£F go I - +F

Days.
The logistic model reasonably describes a great variety of populations.
The curve above displays the population growth of fruit flies (Drosoph-
ila) studied by Raymond Pearl in 1920. Pearl, in "The Biology of Pop-
ulation Growth," argued that populations, from yeast to fruit flies to
people, exhibit the same shapes of population growth.

In microbiology, the study of population growth is not so fraught with
the challenges of social science. Something interesting is afoot when
population growth does not fit a logistic model. In particular, Monod
found biphasic growth, or what he called diauxie—one growth cycle
and then another, separated by a pause—when looking at populations
of E. Coli bacteria in which a typical food (glucose) was limited and
alternative food (sorbitol) was provided. In three experiments (graphs
A,B,C below), different amounts of glucose and sorbitol were provided;
the first growth was proportional to the amount of glucose and the sec-
ond to the amount of sorbitol. This demonstrated that the E. Coli were
eating the glucose first, pausing, then eating the sorbitol.

What happens during the pause? How did these little bacteria sud-
denly gain the ability to metabolize sorbitol? Why didn't they just eat
what was available from the beginning? The full answer is given by
the intricate mix of genetics and biochemistry known as the lac operon.
We focus on the more basic question: how can a dynamical biological
system exhibit a switch?

Q

o

Optical density
)

L4 . Lk L= T ]
=]

N
O

o

Figure 5 from Lotka's
"Elements of Physical
Biology," 1925 Edition.
This graph is based on
earlier studies of Pearl;
see Figure 15 of "The
Biology of Population
Growth," by Raymond
Pearl. Reading Pearl
nowadays, his model-
ing of human popula-
tion growth is grounded
in overtly colonial,
racist, and sexist ideas.

More dramatically, Lot-
ka fits the population of
the United States, from
1790-1910, to a logistic
model. He extrapolates
to predict a U.S. popu-
lation of 197 million in
the year 2060, caution-
ing that such a forecast
must be "accepted with
reserve."

Figure 9 from Growth
of Bacterial Cultures, by
Jacques Monod, Annu
Rev. Microbiol. 1949.

12 years later, Jacob and
Monod began to under-
stand these patterns in
Genetic Regulatory Mech-
anisms in the Synthesis
of Proteins, ]. Mol. Biol.
1961, leading to their
1965 Nobel Prize.



Lac2 Lactose in E. Coli. The basic model.

Glucose and lactose are sugar molecules. When grown in an environ-
ment with varying amounts of glucose and lactose, it appears that E.
Coli first metabolize the glucose, and when that runs out, they switch
to lactose. The lac operon gives them the capability to switch, and it is
a classic example of a bistable system—a system with two stable equi-
librium points.

We begin with lactose only. Consider a population of E. Coli in a dish.
The scientist has prepared the dish so that it contains lactose.

State variable: Let L be the amount of lactose within the E. Coli bacte-
ria. This is called intracellular lactose.

Change equation: The intracellular lactose changes for two reasons:
first, the E. Coli brings lactose inside through its cell membrane. For
this to happen, i.e., for lactose to permeate the membrane, the cell
needs to produce an enzyme called lactose permease. Second, once
the lactose is inside the E. Coli, the bacterium metabolizes the lactose,
breaking it down into other molecules. Thus the change equation
should look like

L' = [lactose permeation rate] - [lactose metabolic rate]

Abit of lactose always permeates into the E. Coli. But generally, the
lactose permeation rate is directly related to the amount of the enzyme
lactose permease. This amount increases in the presence of lactose up
to a saturation level. As a result, the lactose permeation rate is mod-
eled well by a Hill-type equation.

0.01 + L2

PL) =T

EX. Using Desmos, what are the upper and lower bounds for the
function P(L)? Compare and contrast this function to the Hill function
studied in the insulin-glucose model. Answer in 2-3 sentences.
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On the previous page,
we mentioned glucose
and sorbitol (a sugar
alcohol). Similar di-
auxie were found with
many pairs of sugars by
Monod in his earliest
works.

Permeate: (verb) To
penetrate or diffuse
through, as in a mol-
ecule permeating a
membrane.

The presence of lactose
increases the production
of lactose permease,
which allows even more
lactose into the bacteri-
um. This is a positive
feedback loop!



Lac3 Lactose system: Equilibria

Once the lactose gets inside the E. Coli, the bacterium can happily feast
on it. The metabolism of lactose follows a first-order pattern, where
the amount of lactose metabolized is proportional to how much lactose
is inside the E. Coli. We use the proportionality constant 0.4 here, so the
lactose metabolic rate is given by M(L) = 0.4 L.

Putting this together with permeation rate, we have L' = P(L) - M(L), or

_0.01+L2

L —T—OAL.

EX. Equilibrium occurs when the amount of lactose going into the E.
Coli equals the amount of lactose metabolized by the E. Coli. On the
axes below, plot the functions P(L) and M(L), and highlight the equi-
librium points. Label your two plots so that it is clear which is perme-
ation rate P(L) and which is metabolism rate M(L).

Rate of change

Intracellular Lactose (L)

EX. Use the formula L' = P(L) - M(L) to draw a phase portrait for the
lactose system below. Use Desmos to approximate the equilibrium
points to three significant digits, and label the points accordingly.

EX. This kind of system exhibits what we call all or nothing behav-
ior. With reference to the phase portrait above, what do you think this
means?

Gentamicin and aspirin
were previous examples
of first-order metab-
olism (exponential

decay).

Don't forget to make
filled / empty circles for
stable / unstable equilib-
ria, and draw arrows to
indicate the direction of
trajectories.



Lac4 Lactose system: Glucose and the switch

When E. Coli eat their favorite food, glucose, a side effect is that a Glucose affects the lac-
protein binds to the lactose permease, making it unable to help lactose tose system in r_nultiple
permeate into the cell. If the amount of glucose is g, then the lactose ways; we only intro-

duce one here. Note
that in the absence of
2 glucose, g=0, this func-
P(L) = LJFLz tion is the same as the
1+(1+g)L

previous function P(L).

permeation rate becomes

EX. Use the same method as before, to plot P(L) and M(L) for various
values of g (between 0 and 2) in Desmos. Do not reproduce your plots
here. But describe the equilibrium point(s) in the absence of glucose
(when g = 0) and when there is a lot of glucose (when g = 2).

EX. Monod found that when E. Coli are grown in a plate with both
glucose and lactose, they first consume glucose, and then consume
lactose. How does our model explain this?
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GE1 The Central Dogma

The Central Dogma: "Once information has got into a protein it
can't get out again". Information here means the sequence of
the amino acld residues, or other sequences related to it.

Thaet 1s, we may be able to have

>

DNA : T ~ RNA —_ " Protein
I"\ I_"- i-.
\‘-... \
but never
DNA© RHA < g Frotein
r~

where the arrows show the transfer of information.

Genes are chunks of a DNA sequence. They have marked beginnings
and ends, and we can read them out as sequences of letters A, T,G,C us-
ing modern technology. Some human genes are 500 letters long, some
are over a million letters long. You can download all of the genes for
humans and many other species.

The letters from a gene are transcribed onto messenger RNA (mRNA).
Some portions within the gene (the introns) are snipped out, and others
(the exons) are kept for the mRNA. The mRNA travels from the nu-
cleus (where DNA is stored) out into the cytoplasm. Nowadays, we
can count these mRNA transcripts in a single cell. A single gene might
be transcribed many times, leading to hundreds of mRNA transcripts
floating around. Or, a single gene might not be transcribed at all, lead-
ing to no mRNA transcripts!

In the cytoplasm, the ribosomes translate the information from mRNA
to build proteins. We can also measure how much of various proteins
is contained in a cell. This is called proteomics. It is more difficult than
counting mRNA transcripts, at least for now.

This whole process, from DNA to mRNA to proteins, is called gene
expression. A single gene on a single strand of DNA can be transcribed
many many times, producing lots of mRNA. Each transcript can go to
the ribosomes to produce lots of protein molecules. The protein mol-
ecules are the ones that carry out all the "functions" of day to day cell
life. For each gene, we can measure two quantities within a cell.

Let R be the number of mRNA transcripts contained in the cell.

Let P be the number of protein molecules contained in the cell.

The "Central Dogma"
of molecular biology
comes from this unpub-
lished note by Francis
Crick, 1956.

Image Credit: Wellcome
Library, London.

Go to the UCSC Ge-
nome browser, at ge-
nome.ucsc.edu. There
you can enter a gene,
and find all sorts of
information, including
its sequence of A, T,G,C
letters.

DNA (gene)

transcription

\

mRNA (transcript)

translation

\

Protein



GE2 The dynamics of gene expression

When a gene is expressed, mRNA is produced at a transcription rate:
p molecules per hour. At the same time, mRNA degrades with first-or-
der rate constant d. The resulting change equation is

R'=p-dR.
EX. Some mRNA transcripts degrade in minutes, while others last
for days. This depends on the particular gene and cell. Based on this,

what are realistic values of the decay rate d in the change equation?

The decay rate is between and

EX. What is the number of mRNA transcripts, when the system is in
equilibrium? Express your answer algebraically in terms of p and d.

The equilibrium number of transcripts is

The ribosomes translate the mRNA transcripts to make proteins (with-
out destroying the mRNA). In this way, the rate of protein production
depends on the number of mRNA transcripts; additionally, protein
molecules degrade with a first-order rate constant y. The resulting
change equation is

P'=BR-yP.
Here B is called the translation rate.
EX. What is the number of protein molecules, when the entire system
is in equilibrium? Express your answer algebraically in terms of the
parameters p, O, 3, Y.

The equilibrium number of protein molecules is
EX. Draw a time series, indicating what happens if R and P begin at
zero. Your time series should contain two line plots: one for R and one
for P. Choose realistic values for all rates, based on what you can look

up about mRNA and protein transcription/ translation and degradation
in a single cell.
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The model here is
adapted from a minimal
model discussed in Cen-
tral dogma rates and the
trade-off between precision
and economy in gene
expression, by Hauser et
el., Nature Communica-
tions (2019).



Chem1 Chemical kinetics: Decomposition of H,O,

Hydrogen peroxide H,O, is a molecule with two hydrogen atoms and
two oxygen atoms. It is sold at pharmacies in a solution of water. If
you pour some out, you will see bubbles, as it undergoes a reaction

2H0,-2H0+0,

This means that two hydrogen peroxide molecules (the reactants) de-
compose, and the results (products) are two water molecules (a harm-
less puddle) and one oxygen molecule (bubbles).

When molecules are in a solution, we typically study their concen-
tration: how many molecules are in each unit of volume. A typical
concentration of H O, is 1 molar, meaning there is about 1 mole (6 - 10®
molecules) of hydrogen peroxide in a 1 Liter bottle.

Imagine you open a 1 Liter bottle of hydrogen peroxide and pour it
out into a large bowl. Let C(t) be the concentration of H,O, at time t.
This concentration is usually written [H,O,] by chemists. The decom-
position reaction is a first order reaction, which means that it exhibits

simple kinetics; concentrations change over time according to the rule

d[H,O
C'=-k C, or in chemist notation, % =-k[H,0,]
where the rate constant k depends on the reactant, temperature, and

other environmental variables.

EX. Draw a phase portrait for the hydrogen peroxide system. What do
the equilibrium point(s) mean about the system?

EX. A typical rate constant k for the decomposition of H,O, would be
k=0.04, if time is measured in minutes. Given a starting concentration
[H,0,] = 1M, describe [H,O,] as an exponential function of time, in
natural (base e) form.

EX. After how many minutes (round to the nearest minute) do you
expect 90% of the hydrogen peroxide to decompose?

The kinetics of a chem-
ical reaction refers to
how quantities of var-
ious molecules change
over time.

This should be an sim-
pler phase portrait than
the last few pages!



Chem2 Chemical kinetics: Dissociation of water

Water is a molecule with two hydrogen atoms and one oxygen atom. It
falls out of the sky, comes out of your faucet, and still people buy it in

little bottles. We think of water as stable, but it breaks apart sometimes.

The dissociation of water is the following reaction: H,O < H* + OH".

This reaction is reversible, which means that those ions H* and OH-
love to bond with each other, turning back into water again. The kinet-
ics of this reaction are governed by the change equations:

%zﬁ[m [OH] - 5 [H,0].
d[H]  d[OH]  d[H0]
.~ dt ~ at

EX. The terms with Greek letters 3 and d indicate the "birth" and
"death" of water molecules. In light of sharks and tuna, why is there a
term with the product [H*] [OH] ?

EX. The second line of equations states that three rates are equal to
each other. How does that reflect physical reality?

EX. Realistic values are § = 1.3 - 10" and d = 2.34 - 10°® in typical condi-
tions (units are M's™ and s*). If the dissociation system is in equilibri-
um, one finds that
[H'] [OH] - (HO].
Find the value of the missing constant!
A liter of water contains about 55.56 moles of water molecules, so [H,O]
= 55.56. Use this and the fact that [H*] = [OH’], to find the concentra-
tion of hydrogen ions and hydroxide ions.
[H] = [OH] =
The pH of water is defined by pH = -log, ([H"] ).

What is the pH of water?
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H" is a hydrogen ion,
which is a hydrogen
atom that's lost its elec-
tron. Itis just a proton!

OH'is an oxygen atom
bonded to a hydrogen
atom, with one extra
electron. It's called a
hydroxide ion.

In fact, hydrogen ions
(protons) don't just
float around the water;
they glom onto water
molecules to produce
complicated structures.



GLV1 Moose and squirrel

What happens when we combine our logistic model of individual con-
strained population growth with competition for resources? We study
Moose and Squirrel, as a fictional example. (Real examples will follow.)

Let M be the population of moose (in hundreds), and let S be the pop-
ulation of squirrels (in thousands). If they did not interact with each
other, their populations are modeled by separate equations.

S'=35-¢%° and M'=2M-M2

EX. What do the different constants (2 and 3) reflect about moose and
squirrels in this model?

For the rest of these exercises, we study the following model, in which
moose-squirrel interactions have negative effects on both species.

M'=2M - M?- 0.5 MS.
S'=35-S*-MS.

EX. Contrast this to our model of sharks and tuna. What are the most
dramatic differences?

EX. Assume there are no moose (M = 0). Draw a phase portrait for
squirrels, identifying the equilibrium numbers of squirrels.

EX. Assume there are no squirrels (S = 0). Draw a phase portrait for
moose, identifying the equilibrium numbers of moose.

An unofficial image of
Rocky the squirrel and
Bullwinkle the Moose.



GLV2 Moose and squirrel, continued

EX. The squirrel population will not change when S' = 0. The moose Guide: To graph the
will not change when M' = 0. Using some algebra (see the margin), S-nullcline, solve S'=0.

draw the nullclines in Moose-Squirrel State Space below.
Thus we have to solve

35-MS-52=0.

Factoring yields
35-MS-S? = S(3-M-S).

Thus S'=0 when...
S=0 or 3-M-S=0.

Plot S=0 and S = 3-M.

Number of squirrels (thousands)

0

0 Number of moose (hundreds)

EX. On the plot above, highlight all equilibrium points. These are the
points at which both S'=0 and M' = 0.

EX. Now we will draw the vector field, showing how we expect the
numbers of moose and squirrel to change, according to our model.
Choose five starting points (M,S). Choose points from all regions of
the plot. For each starting point (M,S), draw an arrow from (M,S) to
(M+M', 5+5'), indicating how the numbers of moose and squirrels will
change. We have given one example already on the plot above.

Example: If M=1 and S=1, then M'=0.5and S' = 1.
So we drew an arrow from (1, 1) to (1+0.5, 1+1).

EX. Load the Generalized Lotka-Volterra Explorer, and enter the change

equations. What do you think happens to the populations of moose
and squirrel in the long term, according to this model?
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GLV3 Modeling interacting populations (gerbils)

In the Western Negev desert, there are two species of wild gerbils:
Gerbillus (andersoni) allenbyi and Gerbillus pyramidum. Individuals of the
species G. pyramidum are about twice as large as their G. allenbyi col-
leagues. Both species forage for seeds at night and live in sand dunes.

EX. Declare state variables, and model these populations of gerbils
with a pair of change equations. Your model should incorporate gerbil
reproduction and interaction as described above. Use plausible units
and parameters.

Unit of time:

State variables:

Change equations:

EX. Explain your model of gerbil populations. How did you choose
the general form of your terms, and the specific parameters.

Examples here are
adapted and simplified
from Chapter 5 of Go-
telli, A Primer of Ecology.

Gerbillus pyramidum, the
Greater Egyptian Ger-
bil, image by Georges
Cuvier, 1817.

Gerbillus andersoni
allenbyi, or Anderson's
Gerbil, from Hai-Bar
Yotvata Nature Pre-
serve.



GLV4 Trajectories in state space

EX. Draw time series for the populations of G. pyramidum and G. allen-
byi, consistent with your model and approaching equilibrium.

EX. Tell the story behind your time series. What is happening to the
two populations, and why? Be creative, but your story must be consis-
tent with your model and explanation on the previous page.

EX. Draw the trajectory in state space which matches your time series
of gerbil populations.
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GLV5 Modeling interacting populations (lice)

Lice, such as the head louse (Pediculus humanus capitis) and the body
louse (Pediculus humanus humanus) thrive on the human body. Head
lice do not spread any diseases, and some have hypothesized that head
lice are actually beneficial to humans by altering their immune system.
Body lice, on the other hand, are implicated in the spread of disease
such as typhus, by passing the bacteria Rickettsia prowazekii to their
human hosts.

EX. Declare state variables, and model populations of head lice, body
lice, and humans with three change equations. Use plausible units and
parameters.

Unit of time:

State variables:

Change equations:

EX. Explain your model of human and louse populations. How did
you choose the general form of your terms and the coefficients.

The head louse. Scary,
itchy, but harmless.

Image credit Des
Helmore / Manaaki
Whenua — Landcare
Research.



GLV6 Trajectories in state space

EX. Draw three time series for the populations of head lice, body lice,
and humans, consistent with your model.

Populations of humans
Populations of lice

Y

EX. Tell the story behind your time series. What is happening to the
two populations, and why? Be creative, but your story must be consis-
tent with your model and explanation on the previous page.

EX.* According to the model you've chosen, what are the equilibrium
points? What do they mean in terms of the three populations and their
interactions?
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GLV7 Exploration of nullclines and equilibria

Here we explore a very general model, which is meant to describe two
populations in which...

1. Each population, independently, has a fixed birth/death rate and
possibly a carrying capacity. Treating the populations separately, the
system would exhibit exponential growth/decay or a logistic model.

2. Interactions between the populations may be helpful to both (e.g.,
cooperation), helpful to one and harmful to the other (e.g., preda-
tor-prey), or harmful to both (e.g., competition).

The change equations for such a system are the following.

P'=aP - yP?+uPQ )
Q' =pQ-0Q%+vPQ

These are called generalized Lotka-Volterra equations.

EX. If the parameters u and v are both zero, describe the system, in
terms of what we have learned earlier.

EX. Suppose that both u and v are positive but both a and { are nega-
tive . What does this mean about the two populations?

EX. Go to the Generalized Lotka-Volterra Explorer. Find values of the
parameters with positive u and v, in which there is an attractive equi-
librium point with positive P and Q. List your parameter values in the
margin, and describe the dynamics in 1-2 sentences.

My parameters:



GLV8 Gause's Paramecia

Paramecia are single-cell eukaryotic (the cell has a nucleus) organisms,

D P
that like to float around in ponds eating bacteria and algae. In the ) v 14 ?0
early 20th century, the Russian scientist Gause carried out experiments
on two species of paramecia: P. aurelia and P. caudatem. In his experi- 3 34 10
ments, he carefully bred each species in identical conditions -- first on 4 56 1
their own, then sharing a dish. Here we examine Gause's data with a 5 94 71
generalized Lotka-Volterra model, marked (1) on the previous page. 6 189 56
L : : . _ 7 266 104
et P be the population of P. aurelia, and Q the population of P. cau
datem. 8 330 137
9 416 165
EX. Use the Logistic Growth Explorer and the top data table to estimate 10 507 194
a, v, B, 0. To fit the logistic curve, enter the population data, and find
parameters which minimize the "residual sum of squares." Consider P u °80 217
and Q completely separately for this part! 12 610 199
13 513 201
o= Y = 14 593 182

Populations of parame-
B= o= cia, living separately.
Adapted from Table 1 of
EX. Use the bottom data table (where species interact) and the General- PH. Leslie, An Analysis
ized Lotka-Volterra Explorer to estimate the parameters u and v. Canyou of the Data for Some Ex-
find parameter values which roughly fit the data? Hint: try small neg- periments Carried out by

. . . . . ith Populati
ative values of u and v, turn on nullclines, and click to start trajectories. Gause wi opu ations of
the Protozoa, in Bio-

metrika (1957).
u= , V=

Day P Q

EX. When the two species of paramecia are bred on the same plate, 2 10 10

what do you think is their relationship to each other? Predator and

prey? Competition for resources? Cooperation? Justify your answer. 3 21 1
4 58 29
5 202 50
6 163 88
7 221 102
8 293 124
9 236 93
10 303 80
11 302 66
12 340 83
13 387 55

14 335 67

Populations of para-
mecia, living together.
Adapted from Table 3 of
loc. cit.
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Eq1 Equilibria in two dimensions: Synthesis

On the left is a picture of one type of equilibri-
um point, in a system with two state variables.
This image (from Figure 27 of Lotka's Physical
Biology) displays three trajectories in state
space, swirling towards an equilibrium point.

EX. (Creative writing) Think of two quantities
which may exhibit such trajectories. Declare
state variables with "Let..." sentences, to de-
scribe the system.

Let be

Let be

o

EX. Draw time-series plots for both of your state variables, corresponding to one of the three
trajectories in the image above.

EX. Write a system of two change equations, with your chosen state
variables, which exhibits these kinds of "spiraling-in" trajectories near
an equilibrium point. You may use the Generalized Lotka-Volterra Explor-
er to help find such change equations.



Eq2 Equilibria in two dimensions: Synthesis

Type

EX. On the left, reproduce another type of
equilibrium point, choosing the image from
one of Lotka's types A-J, shown on the open-
ing page of this Lab.

EX. (Creative writing) Think of two quantities
which may exhibit these trajectories. Declare

state variables with "Let..." sentences to de-
scribe the system.

Let be

Let be

EX. Draw time-series plots for both of your state variables, corresponding to one of the trajecto-

ries in the image above.

EX. Write a system of two change equations, with your chosen state
variables, which exhibits these kinds of trajectories near an equilibrium

point.
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Figure 2 from On "relaxation-oscillations,” by Balth.van der Poljun.D.Sc, in the London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of Science (1926). Shown are two tra-
jectories that approach a stable limit cycle. One trajectory comes from far away, around (-2,3),
while the other comes from inside at (0,0). Both trajectories approach the same limit cycle, a
closed trajectory having a weird -shaped structure. Van der Pol's equations were used in the
earliest electrical models of the heart.




| ABORATORY 4
(OSCILLATION

Equilibrium is a theoretical state. Real systems are always in motion.
Well-regulated systems are not at rest, but rather they oscillate around
the equilibrium in a predictable manner. In mathematics, the first
oscillators we see are described by sinusoidal functions like sine and
cosine. These appear often in physical sciences, but are less often seen
in the biological sciences. Biological oscillation, like circadian rhythms,
heartbeats, hormonal fluctuations, are far more complicated.

In this lab, we will see three sorts of oscillation.

1. The simple harmonic oscillator (SHO) is useful for understanding
the simplest oscillating systems in physical science. A key example will
be the oscillation of bonds in molecules, which is crucial for spectrosco-
py. The SHO also provides a vocabulary to describe oscillation.

2. Oscillations arise from limit cycles, like the van der Pol oscillator
shown on the opposite page. Other examples include the Holling-Tan-
ner model in ecology, modeling sharks and tuna... when the sharks
have limited appetite. Another example is given by oscillations in
glycolysis, the most important metabolic process in the cell.

3. Oscillations arise from time delay and sharp negative feedback;
nothing happens in an instant. In contrast to change equations from
previous chapters, where one quantity immediately affects how anoth-
er changes, real systems exhibit time delays. These delays can lead to
regular patterns of oscillation, and sometimes to chaos!

EX. Think of a quantity, related to living organisms, that oscillates.
Briefly describe this oscillating system, and how you think the oscilla-
tions are maintained.
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Van der Pol considers
the system of change
equations,

X'=Y
Y' =¢e(1-X)Y - X

Trajectories with the
parameter ¢=1 are
shown on the opposite
page. A time-series is
given below (from Fig.
4 of loc. cit.), showing
the formation of oscilla-
tions.
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Osc1 The "How" of Oscillation

Let X be a single (positive) quantity that changes over time. We be-
gin by asking how X might achieve an oscillating state. We have only
touched the surface of change equations; perhaps there is some new
change equation, X' = F(X), whose trajectories oscillate?

To understand the trajectories, we might begin by drawing a phase
portrait, like the one below.

Recall what this phase portrait displays. The dots indicate the equi-
librium points when X' = F(X) = 0. The arrows point to the right when
F(X) >0, and the arrows point to the left when F(X) < 0.

A trajectory in such a system must follow the arrows. If a trajectory
ever hits an equilibrium point, it must stop moving.

EX. Explain, in 1-2 sentences, why such a system can never reverse di-
rection. In other words, if X' = F(X), then the quantity X(t) can increase
or decrease, but it can never do one then the other.

EX. Itis cold outside, and your room is equipped with a simple on/
off heater. Whenever the temperature drops below 65 degrees, you feel
cold and turn on the heater. When the temperature is above 75 degrees,
you feel hot and you turn off the heater. Draw a time-series plot of the
temperature of your room.

EX. Can the above situation be described by a single change equation?
Why or why not?



Osc2 Momentum and Force

A single change equation X' = F(X) cannot produce oscillations. On the
other hand we have seen that a pair of change equations, like sharks
and tuna, can produce oscillations in both quantities. We might say
that a quantity cannot oscillate on its own.

In physics, this problem is resolved by a radical idea. In addition to
tracking the traditional state of a system (a state variable X), one also
tracks the momentum of the system (a state variable "P" for imPetus).
If one works with the simplest physical system, a moving ball, then X
would represent the position of the ball, and P would represent the
velocity of the ball multiplied by its mass. This P reflects the oomph
of the ball, called the momentum.

The position X and momentum P are then forever linked by a simple
looking change equation:

m X' =D, or equivalently X' =u P
Here m is the mass of the ball, and u = 1/m is its reciprocal.

If the change in position X' is described by P, how does momentum
change? The answer is given by Newton's Second Law, which states:

P' = [The force applied to the ball]

In other words, force determines the change to momentum. And mo-
mentum (divided by mass) determines the change in position. In this
Newtonian model, force does not directly change the position. That is
the big first insight of Newtonian physics.

EX. A 3 kilogram ball is falling from a height of 10 meters. Its current
velocity is 2 m/s downwards. The force of gravity is equal to 30 kg m/
s?. Using the discrete time model below, fill out the table to see what
happens to the position and velocity of the ball in the subsequent 0.3
seconds.

AX/At=-uP and AP/At=30.

Note that the initial momentum is 6 kg m/s, since the 3 kg ball is fall-
ing at2 m/s. Our time interval is At = 0.1 second.

time X (meters) | P (kg m/s) AX AP
0 10 6
0.1
0.2
0.3
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10 meters
(&)
6kgm/s

E—

The above system
shows a ball with posi-
tion (height) X =10 m,
mass 3kg and velocity 2
m/s (downwards), and
momentum:
P=6kgm/s.

Newton's Law in orig-
inal Latin: Mutationem
motus proportionalem esse
vi motrici impressae

Translated: A change in
momentum is proportional
to the motive force applied.



SHO1 Introducing the Simple Harmonic Oscillator

The simple harmonic oscillator refers to any model with two state
variables, say X and P, two positive parameters u and k, and the fol-
lowing innocent-looking change equations.

X'=dX/dt=uP and P'=dP/dt=-kX

The quantity X typically represents the position of some thing. The
quantity P then represents its momentum, and u = 1/m is the recip-
rocal of the mass. And the force, which equals P' by Newton's law, is
proportional to -X. This means that the force is a restoring force. If X
is positive, the force -kX is negative, pulling X towards 0. And if X is
negative, the force -kX is positive, pushing X towards 0.

EX. Consider the following discrete-time simple harmonic oscillator,
with parameters u=1 and k=1.

AX/At=P and AP/At=-X.

Suppose you begin at the state X=1 and P=0, when t=0. Using time
steps At=1, find the states at t=1, t=2, and t=3. Fill out the table below.

time X P AX AP
0 1 0
1
2
3

EX. Carry out the same process, but using time interval At=0.5. The re-
sulting table should have 7 rows (t=0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0). Sketch
the trajectory in state space below.

We choose these letters
X, P, u, k, because they
are commonly used in
physics.

X=0

@ /\\W\

The spring pulls/push-
es the ball towards 0.

The harmonic oscillator
is an example of a nega-
tive feedback loop. The
position negatively in-
fluences the momentum
through the restoring
force.



SHO2 Exploring the Simple Harmonic Oscillator

Using a discrete-time approximation, you should find that the change
equations AX/At =P and AP/At =-X yield a spiraling trajectory. In
fact this spirals out less and less when At gets smaller. To see what
happens when At becomes the infinitesimal differential dt, load the
Simple Harmonic Oscillator simulator. This simulates the equations:

X'=uP and P'=-kX

EX. Find the equilibrium point of the simple harmonic oscillator, and
explain why it is the only equilibrium point.

The only equilibrium point of the SHO is at X = ,P= ,
because...

EX. Experiment with trajectories in the simulator. Describe the tra-
jectories when u=1 and k=1. Then describe the effect of changing the
parameters u and k. What shapes do you find, and how do the param-
eters affect the shapes? Draw a picture to accompany your description.

EX. The trajectories for the simple harmonic oscillator are closed,
meaning they follow a path that leads back to where they start. The
period is how much time it takes to complete a cycle. Explore to see
how the period may depend on the starting point and the parameters
u and k. Describe your findings qualitatively. (On the next page, you
will collect data more formally).
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SHO3 Anatomy of the Simple Harmonic Oscillator

In the simple harmonic oscillator, two quantities called X and P,
change according to the equations

X'=dX/dt=uP and P'=dP/dt=-kX.

The resulting trajectories are elliptical. The period of oscillation, re-
markably, does not depend on the starting point. Rather, the period is
given formulaically from the parameters u and k.

EX. Fix u, and try diferent values of k. Then fix k and try different
values of u. Collecting data in this way, and using the Linear Regression
with Log Scaling Tool, develop of a formula which relates the period of
oscillation to u and k. Hint: When u =1 and k = 1, the period is 2m.

Period =27t

If you start your trajectory at X=0, P=1, with the parameters u=1 and
k=1, then the trajectory traces a unit circle at velocity 1. The time-series
are then described by the cosine and sine functions.

X = sin(t) and P =cos(t)

The trajectory in state
space is circular when
u=1 and k=1. It takes
27, about 6.28, units of
time to go around the
circle. The amplitude is
the radius of the circle.

Amplitude
-«

A
\

The period of the oscillation Note that X is on the
horizontal and P is on

the vertical axis here.
When the starting point is changed, the circle can become larger and
smaller. This does not change the period! But it does change the am-
plitude. When u and k are changed, the circle becomes an ellipse; the
two waves have different amplitudes, but the same period.

EX. Draw the time series, when u=8 and k=2, with starting point (1,0).
Label your plot to show the period and the amplitudes of the X and P
oscillations. Sketch the trajectory in state space in the margin.



SHO4 Sine and cosine

The simplest harmonic oscillator has the form, X'=P and P'=-X.
When X(0) = 0 and P(0) = 1, the time series are given by functions

X =sin(t) and P = cos(t).

EX. Taking these facts as a given, what is the derivative of sin(t)? What
is the derivative of cos(t)?

EX. Let X(t) = a sin(bt). Using Desmos, how do the parameters a and b
relate to the period and amplitude of oscillation?

EX. If X(t) = a sin(bt), then what is X'(t)? Reason geometrically; how do
the parameters a and b affect the graph, and its slopes?

EX. A typical human's body temperature fluctuates during the day,
with average 36.5°C, around noon and midnight, maximum 37°C and
minimum 36°C. Let B(t) be the body temperature at time t, where t is
measured in hours and t=0 represents midnight. Model the function
B(t) by an appropriate sinusoidal function.

EX. A damped harmonic oscillator has time-series described by the
function X(t) = sin(t) e*and P(t) = cos(t) e*. Sketch the resulting time-se-
ries and trajectory in state space here, starting at t=0.
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Osc3 Units for describing oscillation

Suppose that X is a quantity that oscillates. This means that, the long-
term behavior of X involves a repeating pattern of increasing and
decreasing. We have already met the period of oscillation—the length
of time to complete a full cycle.

The frequency of oscillation is how many oscillations occur in a given
unit of time. For example, if the period of oscillation is 3 months, then
the frequency of oscillation is 4 per year.

EX. Convert the following periods to frequencies.

The semidiurnal tide has a period of 12 hours. The frequency of this
tide is per day.

The E. Coli cell cycle has a period of 30 minutes. The frequency of this
cell cycle is per hour.

The "ultradian" oscillation of insulin has a period of 60 minutes. The
frequency of this oscillation is per day.

A typical unit of frequency is the Hertz, abbreviated Hz. The unit "Hz"
means "per second." So an oscillation frequency of 20 Hz means that
the oscillation occurs 20 times each second.

EX. The refresh rate of your computer monitor is probably 60 Hz.
What is the period of this oscillation, in milliseconds?

EX. The sound of a "middle C" on a modern instrument consists of air
pressure waves which oscillate with a 3.83 ms (millisecond) period.
When a middle C is played, how many times does a string vibrate each
second? In other words, what is the frequency, in Hz?

EX. Light consists of vibrations in the electromagnetic field. A red
light (e.g., from a red laser pointer) represents oscillations at a frequen-
cy of 4.3 - 10" Hz. What is the period of the vibration?

1 millisecond, or 1 ms
equals 1/1000, or 107
seconds.



Osc4d Light

Light is strange stuff. Einstein noted that light behaves like little par-
ticles (photons), each traveling at a fixed speed c called the speed of
light. This speed of light doesn't change if you shine a flashlight from
a speeding train, or launch your flashlight into space, or choose a red or
blue light. This speed of light is a constant, a really big constant, which
we can experimentally measure.

¢ =3 x 10°m/s = 300 million meters per second.

At the same time, light behaves like a wave—it oscillates. Every pho-
ton of light has a frequency £, describing how fast it oscillates. Every
photon also has a wavelength A, because light waves have a length in
space. The frequency and wavelength are linked by the equation

fA=c

Note that the units of speed are m/s (meters per second). The units of
frequency are Hz ("per second"). The units of wavelength are meters.

EX. Ared laser emits light with frequency 4.3 - 10" Hz. What is its
wavelength? Express your answer in nanometers (1 nm = 10 m).

A= nm

EX. Ablue laser emits light with wavelength 450 nm. What is its fre-
quency?

EX. Fill out the following table, with ranges of frequencies and wave-
lengths for commonly occuring photons. Look these up and briefly
describe your source in the margin.

Name of light
X-ray, Gamma-ray
Ultraviolet

Visible light
Infrared

Wavelengths Frequencies

380 - 700 nm

Microwave
Radio (WiFj, etc.)

EX. Molecules behave somewhat like balls (atoms) attached by springs
(covalent bonds). As such, a water molecule can vibrate in a few ways,
with frequencies 1.126x10™, 1.097x10", and 4.782x10" Hz. Light with
those frequencies is easily absorbed by water molecules, making them
vibrate. What sort of light (according to the table above) is absorbed by
water? (This is why water vapor is a greenhouse gas!)
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Here we're talking
about the speed of

light in a vacuum, i.e.,
when there's nothing
for the light to "bump”
into. The speed of light
in water is about 25%
slower. Air slows down
light by about 0.03%.

A is the lowercase Greek
letter lambda. Draw it
below for practice.

Information source for
table:

(@)

In water, the H-O bond
lengths can vibrate, and
the bond angle (about
104.5 at equilibrium)
can vibrate too.



Gly1 Glycolysis

Glycolysis is a series of chemical reactions that is central to the metab-
olism of cells. It proceeds in 10 steps, beginning with the now-familiar
monosaccharide glucose C;H,,0,, and ending with two molecules of
pyruvate C;H,0;. Each step requires an enzyme, e.g., hexokinase to
get from glucose to G6P. Some steps consume energy and some release
energy. More is released than consumed, and the crucial byproduct

is that glycolysis produces usable energy; this energy is stored in the
molecules ATP and NADH. In cells with mitochondria, NADH enables
mitochondria to generate even more ATP. The molecule ATP is then
used for all sorts of cellular processes, from the firing of our neurons
and whirling of bacterial flagella.

To summarize, glycolysis is the series of chemical reactions which al-
lows glucose to serve as the fuel for cells.

We consider glycolysis here, because it is the most important meta-
bolic process in the cell, and because from single-cell prokaryotes like
E. Coli, and eukaryotes like yeast, to human cells (e.g., p-cells in the
pancreas, muscle cells in the heart), glycolysis oscillates.

On the right is Figure 1 from Richard et al.,
where the authors measure the concentra-

10 steps of glycolysis
1 molecule Glucose :
1 molecule G6P

1 molecule F6P

1 molecule FBP

1 molecule each of
GADP, DHAP l 5

2 molecules GADP ]
2 molecules BPG

2 molecules 3PG ’
2 molecules 2PG °

2 molecules PEP
1o

2 molecules Pyruvate

tion of G6P, F6P, FBP, and DHAP over time, A
in yeast (Saccharomyces cerevisiae). These are
molecules that appear in the first 4 steps of
glycolysis.

[s2]

a

N

glucose
6—phesphate (mM)

EX. What do the marks (squares, diamonds,

o

triangles, circles) mean? What do you think
the wavy lines are?

(mM)
o o o
~ o @

fructose

o
N

@x o
)
(@]

o

fructos h
1.6—bisphosphaie (mM) 6-phosphate

O 1
EX. Estimate the period and frequency of the e 5 |D
oscillations of G6P shown in the figure. 5%
85 2 o
Period = seconds 52
O 0
e 'r
Frequency = per minute v o

1 1 1 1 A
300 320 340 360 380 400 420

time (s)

For oscillation in glycolysis, see Dynamic fluctuations in a bacterial metabolic network, by Bi et al., in Na-
ture Communications (2023) for E. Coli. There are many works for yeast, such as Sustained oscillations in
free-energy state and hexose phosphates in yeast by Richard et al., Yeast (1996). Richard et al. is the source for
the above figure. For humans, see e.g, Metabolic oscillations in beta-cells by Kennedy et al., Diabetes (2002).



Gly2 Oscillation and phase shift

EX. Compare and contrast the oscillations of G6P, F6P, and FBP in the
figure.

EX. A general sinusoidal function has the form

S(t) = A n(@)

This function has three parameters, called A, p, and ¢. Use Desmos to
explore these parameters. You have already seen what A and p repre-
sent. The parameter ¢ is called the phase shift. Describe what all these
parameters mean for the graph of S(t).

Ais the ...
pis the ...

¢ is the ...

EX. Considering the step-by-step nature of glycolysis, and the figure,
why might you see differences in phase shift when looking at G6F, F6P,
and FBP?
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@ is the lowercase
Greek letter phi. Draw
it below for practice.




Gly3 Glycolysis: source of oscillations

One source of oscillations can be found in Step 3 of glycolysis, where
F6P is converted to FBP. The chemical reaction requires an enzyme
PFK activated by two molecules of ADP. It also requires a molecule of
ATP, the energy source of the cell. So the input for Step 3 is really...

1F6P +1 PFK +2 ADP + 1 ATP.

The output of Step 3 is also more complicated. The F6P is indeed con-
verted to FBP. The enzyme PFK and its 2 ADP activators are not "used
up" and so they wash out unchanged. But the energy source ATP is

used up, leaving a molecule of ADP. So the output of Step 3 is really...

1 FBP + 1 PFK + 3 ADP.

To complete the construction of the model, we make three more as-
sumptions. First, that there is plenty of PFK and ATP floating around
in the cellular environment. Second, that ADP is removed in a first-or-
der fashion (exponential decay). Third, that F6P is produced at a
steady rate by Steps 1 and 2 of Glycolysis.

Our model comes from the chemical reaction: 1 F6P + 2 ADP — 3 ADP,
since we ignore the PFK which is unchanged.

@ — v - c[F6P] [ADP.
@ _ ¢ [F6P] [ADP] - k [ADP]

EX. What is the meaning of the term [F6P] [ADP]*? Look at the input
to Step 3 to find the interaction.

EX. What do the terms v and -k[ADP] mean? Which assumptions do
they reflect about our model?

10 steps of glycolysis

1 molecule Glucose
1

1 molecule G6P

2

1 molecule F6P
I3

1 molecule FBP
4

1 molecule each of
GADP, DHAP l 5

2 molecules GADP l ]
2 molecules BPG
2 molecules 3PG l ’
2 molecules 2PG j z
2 molecules PEP

1o

2 molecules Pyruvate



Gly4 Glycolysis: Higgins-Sel'kov model

Let F be the concentration of F6P (fructose-6-phosphate) molecules in
our cell. Let A be the concentration of ADP (adenosine diphosphate)
molecules in our cell. Our previous change equations can be written
more compactly in the form

F'=v-cFA? and A'=cFA%*-kA

EX. The A-nullcline occurs when ¢ FA? - kA = 0. Complete the follow-
ing sentence with an algebraic expression.

A'=0when A=0orwhenF =

EX. If the parameters v,c k are all equal to 1, there is a unique equilibri-
um point. What is this point?

Equilibrium occurs when A = and F =
EX. Load the Higgins-Selkov simulator to explore trajectories and pa-

rameters. Draw three trajectories you see for each of the parameter
choices below. Compute the equilibrium point in both cases.

[ [
\O \O
=] =]
[ADP] [ADP]
Parameters: v=1, c=0.9, k=1 Parameters: v=1, c=1.1, k=1
Equilibrium point: Equilibrium point:

EX. Based on these explorations, compare the oscillations you expect
to see if you measure [F6P] and [ADP]. Their period? Phase shift?
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HT1 Holling-Tanner Model

We return now to predator-prey systems, like our familiar sharks and Here we are using
tuna. The original Lotka-Volterra equations were the following. derivatives (continuous
model) S' and T', while
S'=-3S+pST and T =fT-qST in Lab #1 we used the

discrete time model

. . N with rates of change
Rather than using simple exponential birth / death rates, we learned AS/Atand AT/ At.

to incorporate a "carrying capacity” in a logistic model. Putting this
together, we get the generalized Lotka-Volterra equations below.

S'=aS(1-S/k)+pST and T =BT (1-T/m)-qST

One criticism of this model is that the sharks seem to have infinite
appetite for tuna. No matter how large the number of tuna, the sharks
seem to chomp them up. To fix this, the rate of tuna consumption
should reflect the following;:

It should be proportional to the number of sharks. For example, twice
as many sharks should yield twice as many eaten tuna. So the rate of
tuna consumption should look like

[Rate of tuna-eating per shark] - [Number of sharks]

The rate of tuna-eating per shark (1) should be zero if there are zero
tuna; (2) it should grow with the number of tuna, but (3) it should
reach saturation. Each shark has a maximum appetite for tuna.

EX. Let A(T) be the rate of tuna-eating per shark. Draw a plausible
graph of A(T), with T on the horizontal axis, based on the model as-
sumptions (1) and (2) and (3) above.

Rate of
tuna eating
per shark

Y

Number of tuna available (T)

cTd To graph with parame-
Td+h ters, and restricting the
domain, type what's
below into Desmos.

A model of A(T) can be given by a Hill function: A(T) =

EX. Use Desmos to explore this function, where c and d and h are
positive parameters (with d = 1). Which parameter reflects the shark

) d
appetite, and how? f(x) = ;:h {x >0}




HT2 Completing the Holling-Tanner model

A Hill function can be used to better model the rate at which tuna are We assume d=1 in our
eaten, when sharks have limited appetite. The new change equation Hill function, just to
for tuna is given by keep things a bit simple.

T =BT (1-T/m)- A(D)S =T (1-T/m) - £21

What about the sharks? Another criticism of Lotka-Volterra is that eat-
ing tuna does not directly increase the birth rate of sharks. Tuna help
feed the sharks, for sure, but one would not expect a direct proportion-
ality between tuna-eaten and sharks-born.

A good answer to this criticism is found in the logistic model we use
for the shark population, S'=a S (1 - S/k). Here k denotes the "carry-
ing capacity," which is the maximum amount of sharks the environ-
ment can support. Here, the environment is full of tuna! The carrying
capacity is directly proportional to the number of tuna. If we have
twice as many tuna, the ocean can support twice as many sharks. So
we should have k = q T, for some constant of proportionality q. Putting
this together, we have

S'=aS(1-S/qT) (logistic model with carrying capacity qT)

We do not need an interaction term pST any more! The tuna-effect on
sharks is built in, by incorporating tuna in the carrying capacity.

The resulting pair of change equations is the Holling-Tanner model of
predator-prey populations.

T =BT (1-T/m)- 2L and $'=aS(1-S/qT)

EX. In this model, what do the parameters «, p, m, ¢, and q mean?
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HT3 Holling-Tanner model: dynamics

Now we explore the dynamics of the Holling-Tanner model

ST and S'=aS(1-S/qT).

T' =BT (1-T/m)- ﬁ+T

EX. Describe the S-nullcline, as a pair of lines in shark-tuna space.

S'=0whenS=00rS=

EX. (Challenge!) Describe the T-nullcline in shark-tuna space.

T=0whenT=0o0rS= + T+ T2

Hint: Factoring yields T'=T ( p- % - lrfﬁf

Now load the Holling-Tanner Simulator. This will explore the shark and
tuna population in our new model. The default parameters are

x=0.1,B=10,m=7.0,q=10,h=1.0,c=05.

EX. Note that {8 is 10 times larger than a. What does this mean, in
terms of our assumptions about sharks and tuna?

EX. Adjust the parameter ¢, with values between c¢=0.5 and c=1.2. For
which values of ¢ do you find a stable spiral equilibrium point? For
which values of ¢ do you find an unstable spiral with a limit cycle?
Answer these questions and provide two figures showing the dynam-
ics for two values of ¢ to support your answers.

Fill in the blanks with
algebraic expression
involving only the pa-
rameters.




HT4 Modeling challenge -- three species

Consider an ecological system, with three populations: the cyanobac-
teria, the green algae, and the filter-feeding fish. Let C be the biomass
of cyanobacteria, G the biomass of green algae, and F the number of
filter-feeding fish. This ecosystem has the following properties.

1. The filter-feeding fish eat both cyanobacteria and green algae. They
have a limited appetite, only opening their mouths when hungry.

2. The cyanobacteria and green algae grow in a logistic manner, and
are in competition with each other. The cyanobacteria would typically
outcompete the green algae, if their biomass were equal.

EX. Create a system of three change equations which plausibly models
the three populations, consistent with what is written above.

EX. Do you think that adding filter-feeding fish is a good strategy for
controlling cyanobacteria and green algae? How might this answer
depend on having both cyanobacteria and green algae present rather
than just one of these species? Explain your answer
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Filter-feeders like
bighead carp (Hypoph-
thalmichthys nobilis) use
gill rakers to filter out
nutritious stuff from the
water, eating as they
swim.

Cyanobacteria used
to be called blue-green
algae. But they are
bacteria, which are
cells without nuclei
(prokaryotes). Nowa-
days, the term algae is
reserved for cells with
nuclei (eukaryotes).

This problem is loosely
based on Zhuang et al.,
Population Interaction
Dynamics Analysis of an
Algae-Fish System, in
Applied Mathematics
(2022).



Osc5 Oscillation with two variable systems:

We have seen two sources of oscillation so far, and both require two
(or more!) state variables. One source of oscillation was found in the
simple harmonic oscillator, which led to "neutral” circular or elliptical
trajectories lie those in the margin.

The second source of oscillation we have seen is the limit cycle, found
in our glycolysis model and the Holling-Tanner predator-prey model.
Limit cycles are closed trajectories. If a trajectory starts a bit inside a
stable limit cycle, it will spiral outwards and soon approximate the
limit cycle. If a trajectory starts a bit outside the stable limit cycle, it
will spiral inwards, and again it will soon approximate the limit cycle.

Image of limit cycle in van der Pol
oscillator by Roberto Zanasi, repro-
duced under Creative Commons
Attribution 2.5 License

The Poincare-Bendixson Theorem states that bounded trajectories for
two state variables have one of three flavors

1. The trajectory gets closer and closer to an equilibrium point.

2. The trajectory is closed, meaning that it goes around and around in a
perfectly repeating manner.

3. The trajectory gets closer and closer to a limit cycle.
EX. Explain why a trajectory for two state variables cannot cross itself,

e.g., you will never find a figure-8 shaped trajectory. Hint: where
would the "change vector" point, if the trajectory crosses itself?

recap

Circular trajectories
arise from change equa-
tions like:

X'=PP=-X
Aslight change, like
X' =P P'=-X-0.01P

yields a spiraling trajec-
tory, where oscillations
decay.

Closed trajectories are
curves which return to
the point at which they
begin.

Bounded trajectories
are curves which can
"fit in a box." More
formally, there is some
number D for which
the trajectory never
ventures farther than
D units from where it
began.



Oscé Parameter variation: the FitzHugh-Nagumo model

In a neuron, like most cells, there is a voltage difference between the
inside and outside of the cell, known as the membrane potential.
During a neural spike, the membrane potential of the neuron rapidly
rises. The membrane potential is controlled by ion channels, allowing
the travel of sodium and potassium ions through the cell membrane.

In the FitzHugh-Nagumo model, we use one state variable X for mem-
brane potential, and one state variable Y to represent the state of the
"recovery" ion channels. The change equations are below.

X'=X-X/3-Y+z and Y'=u (X +a-DbY).

When a=0, b=0, and z=0, this is known as the van der Pol oscillator.
Load the FitzHugh Nagumo Neuron Simulator for what follows.

EX. How do the parameters a and b affect the nullclines?

The parameter a controls ...

The parameter b controls ...

EX. The parameter u does not affect the nullclines. But how does
the parameter u affect the shape of the neural spikes (the shape of the
time-series for the membrane potential X)?

EX. Choose either the parameter a or b. Starting with the van der Pol
oscillator, adjust your parameter until the behavior of the trajectories
changes significantly. At what values of the parameter do you find a
limit cycle?
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Outside
neuron

Inside
neuron

70 mV cell

—

1.5 V battery

In resting state, a typi-
cal membrane potential
is -70 mV (milliVolts),
and it peaks around
+40 mV. during a spike.

The FitzHugh-Nagumo
model (1961 and 1962)
simplifies the earlier
Hodgkin-Huxley model
(1952), by considering
only two state variables
rather than four. The
Hodgkin-Huxley more
closely models the
neuron as an electrical
circuit.



TD1 Time delay: a new source of oscillation

A professional driver might have a 200ms (0.2 second) reaction time. If
they are driving along a straight road, and they start drifting right, they
will turn their steering wheel left to correct. And if they drift left, they
will turn their steering wheel right. The farther they see themselves
drifting off, the sharper they will correct.

This scenario can be modeled by the following. Let X(t) be the location
of the car in the lane at time t, where X = 0 means the car is in the center
of the lane. If X =1, the car has drifted outside the lane to the right. If
X =-1, the car has drifted outside the lane to the right.

The driver's steering may be modeled by the following:

AX/ At = -X(t - 0.2) meters per sec.

The right hand side reflects a time delay. The expression X(t - 0.2) When we write X(t-0.2),
means "The location 200ms before time t." For example, if the car starts ~we are evaluating a
drifting to the right, at a rate of 1m/s, then we would find the follow-  function X at the input

t-0.2. This is not X

ing table. times (t-0.2).

Time (sec) |0 01 (02 (03 (04 (05 (0.6 0.7 0.8
Location 0 0.1 (02 {02 (0.19 [0.17 | 0.15 |0.131 |[0.114

At (sec) 01 o1 |o1 |o1 |01 [o1f]o1 |ou1 0.1
AX/ At 01 (01 [0 |-0.1[-0.2 |-0.2]-0.19 [-0.17 |-0.15
Drift phase... Reaction delayed

Before reaction by 0.2 sec

EX. Fill out the next two columns of the table below, to indicate the
position of the car when t=0.9 and t=1.0



TD2 Time delay and steep negative feedback

Now you will use a spreadsheet to explore what hap-
pens in the longer term, and with different parameters.

EX. Create a spreadsheet to explore the first 3 sec-
onds, following the instructions in the margin. Plot the
time-series for X(t) and sketch it below.

EX. Why is the formula "=B2+ (C2*D2)" used in cell
B3? Why is the formula "= -B2" used in cell D4? Re-
late these to the change equation and time delay.

EX. Now try changing the reaction time from 200ms to
1 second, using a 1 second drift period. Then try sharp
negative feedback. The two new change equations
would be:

AX/At=-X(t-1.0) and AX/At=-5X(t-0.2)
Sketch the resulting time series below for these scenar-
ios. Try to find parameters (reaction time, feedback

sharpness) which yield oscillation; if you find them, plot
the time series and record the parameters.
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A B C D

Time (sec) X Dt DX/Dt
0 0.0000 0.1000 0.1000

0.1000  0.0100 0.1000 0.1000
0.2000  0.0200 0.1000 0.0000
0.3000  0.0200 0.1000 -0.0100
0.4000  0.0190 0.1000 -0.0200
0.5000 0.0170 0.1000 -0.0200
0.6000  0.0150 0.1000 -0.0190
0.7000  0.0131 0.1000 -0.0170

0.8000 0.0114 0.1000 -0.0150
A spreadsheet as above can help. En-
ter rows 1 and 2 manually.

Copy-paste the cell C2 into C3, C4,
etc., so the At is 0.1 throughout.

Enter the formula "= A2+C2" into A3,
and copy-paste to cells A4, A5, etc.,
for the time counter. Note the formu-
la will adjust automatically, so A4 =
A3+C3, and A5=A4+C4, etc. This will
fill out your time table.

Enter 0.1 in D2 and D3 for the drift
phase. Enter "=B2+(C2*D2)" into

B3. Enter "=-B2" into D4. Copy-paste
these formulas to fill out columns B
and D to get the full time series data.

Then create a time-series plot from the
data in column B.



TD3 Time-delay in exponential models

EX. The old familiar change equation AP /At = P models a population
that doubles during each unit of time At. Now, consider a population
that doubles with a time delay, AP/At=P(t-2). If P(0)=1and P(1) =1
and P(2) = 1, make a table of P(t) fort=1, ..., 10.

EX. Load the Linear Regression with Log Scaling tool and enter your data
for P(1), P(2),..., P(10). Use this to find a good approximation to P(t) by
an exponential function P(t) = C e*.

The above exercises show that a time-delayed exponential growth is
still very well modeled by standard exponential growth, though the
particular parameters depend on the time delay.

EX. Consider the change equation P' = 100 - P. Using the techniques
from Lab #3, draw a phase portrait and time-series if P(0) = 10.

EX. Consider the equation with time delay: AP/At=100 - P(t- 1).
What happens if P(0) = 10 and P(1) = 20 in this system? What if P(0) =
50 and P(1) = 70? Experiment with starting values of P(0) and P(1) and
describe what you find for the long-term behavior.

A spreadsheet would
be very helpful here,
setting up columns for
P, t, DB, Dt as on the
previous page.



TD4 Time-delay in a logistic model.

In his experiments with populations of water fleas (Daphnia magna),
Pratt found oscillations over time, with similar features. Many of his en from Figure [ of Da-
populations rose and then crashed to extinction; but those that sur- vid M. Pratt, Analysis of

The graph above is tak-

Population Development
in Daphnia at Different
Temperatures, Biological

vived the first decline rose again about 40 days later, declined, rose
again, declined again, etc. Carefully controlling the conditions, Pratt
excluded an external cause of oscillation like predators or prey for his Bulletin (1943). The
fleas. Rather, he speculates, quote here is from the
"The cause of oscillation is the delay in the action of population same article (p.136).
density upon mortality and the reproductive rate... the ultimate
source of oscillation is a lack of synchronization of a physiological
state with the forces that provoke it."

A few years later, Hutchinson modeled this time-delay, with specific

reference to Pratt's work, by the change equation is the lowercase Greek

letter tau. Draw it be-
low for practice.

P'= B -P(t) - (1 - P(t-1)/K).

The parameter { is the net birth rate under ideal conditions, k the car-
rying capacity, and t the time delay. The birth rate is not affected by
crowding immediately. Rather, if the population exceeds the carrying -
capacity at some moment, the negative effect on the population will i

occur T units of time later. This is logistic growth with time delay.

EX. Load the Hutchinson time-delay simulator. Using a birth rate $=0.02
and carrying capacity k=100, sketch the time series for four values of t
between 10 and 100.

EX. Experiment with birth rate and time delay. For each birth rate,
there is a critical value t.; if the time delay is less than ., then popu- B T,
lation will approach equilibrium. If the time delay is greater than .,
oscillations will sustain in the long term. Tabulate the values of t. at
different birth rates. Use this to guess a formula relating t. to .

T. =
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MT1 Muscle tremor

Motor neurons provide an electrical signal to muscles, making them

contract. When muscles stretch, sensory neurons send a message to

the motor neurons to contract. If you attempt to hold a heavy weight

in a stationary position, gravity will pull your muscles to stretch, and "
your neurons will send a signal to your muscles to contract, and a

delicate balance is needed to hold the weight stationary. This can be set

up experimentally, as in the figure in the margin, by having a person [ ] —
attempt to hold a weight stationary while sitting in a chair with elbow
bent 90 degrees.

A Spring 20% =——I1SO 20%

Such experiments were conducted, recording 6
oscillations as the person's muscles became 2 41
tired. In one experiment, a spring was placed g 21
on the chain holding the weight, enhancing 5 z 0 AAANANS Y
the oscillations. In another experiment, the e 2
chain was straight, for an "isometric" hold. § 4

-6 -
EX. Scientists refer to tremor in the alpha 0 0.5 1
band as oscillations of 8-12 Hz, while patho- Time (s)
logical oscillations may have a frequency of Figures 1 (schematic) and 2A, from Budini et al.,

4-6 Hz. Estimate the frequency of oscillations  Alpha Band Cortico-Muscular Coherence

in Figure A; do they fall in the alpha band or Occurs in Healthy Individuals during
pathological band? Mechanically-Induced Tremor, PLOS One (2014). The

"20%" refers to fact that subjects were asked to
sustain elbow flexor contractions at 20% of their
maximal voluntary isometric contraction.

The brachialis muscle is responsible for flexing your elbow. It is about
20cm long when your elbow is bent at 90 degrees. Let L be the length
of this muscle. If you attempt to keep your elbow bent at precisely 90
degrees, the length L might satisfy the change equation below.

L'=r(20-L).

EX. How is the equilibrium point of the above change equation related
to your attempt to keep your elbow at 90 degrees?

EX. What is the physical meaning of the parameter r? Why might r be
larger or smaller for different people or in different situations?



MT2 Muscle tremor

Your ability to hold your elbow at a precise angle depends on the trans-
mission of nerve signals; if your elbow is not at 90 degrees, it will take a
moment for the sensory nerve signal to pass to a motor nerve signal to
activate the muscle to pull your elbow back into position. If the signal
requires T units of time to transmit, then a more appropriate change
equation incorporates this time delay.

L'=r (20 - L(t- 1)).
The default reflex mag-

Load the Simple Muscle Simulator. nitude is r=50, and the
default time delay is T =
EX. Set the reflex magnitude to r=60. The default time delay is 10 10ms in this simulator.
ms. Try increasing the time delay. At what critical time delay does The length L is restrict-
the system display sustained oscillations? What frequency are these ed between 10cm and
oscillations? 30cm in the simulator,

because muscles cannot
get too long or short.

EX. Start with a time delay of 20ms, and try increasing the reflex mag-

nitude. This can happen, for example, if you are trying to counteract a

weight pulling your elbow out of position. At what critical reflex mag-
nitude does the system display sustained oscillations? What frequency
are these oscillations?

EX. The brain normally suppresses the sensitivity of peripheral reflex-
es. In some stroke patients, this suppression is lost, and the person's
muscles will react too strongly (hyperreflexia). Parkinson's disease is
completely different, and often causes a time-delay in the transmission
of nerve signals.

Using the simple muscle simulator as a guide, how might the frequen-

cy of tremor distinguish patients whose tremor arises from Parkinson's
disease from those whose tremor is caused by hyperreflexia?
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1IGO1

In Lab 1, we studied the minimal model for the insulin-glucose system.
The two state variables are G (concentration of glucose in the blood-
stream) and I (concentration of insulin in the bloodstream). The mini-
mal model included a positive influence of glucose on insulin (glucose
"tells" the beta cells to release more insulin) and a negative influence

of insulin on glucose (insulin "tells" muscle and fat cells to take more
gluose).

Another ingredient in the insulin-glucose system involves the alpha
cells in the pancreas. When insulin is low, the alpha cells release a
hormone called glucagon; the glucagon tells the liver to release glucose
into the bloodstream. This is important so our cells have fuel (glucose)
even when we are not eating, e.g., sleeping. With this new element in
our system, we add one more term to our glucose change equation.

x

G'=m+@-sIG

. . o
Liver production of glucose = Trol<

\ G?
I=qbqigr-vl
EX. Use Desmos to explore the new term 1+Lekl'“'
With the parameter values a = 1, k = 2, ¢ = 2, sketch the graph below.

A

Glucose produced
by liver

Insulin-Glucose: Ultradian oscillations

>
>

Insulin in bloodstream

EX. Load the Insulin Glucose Regulation simulator. We explored this in
Lab 1, but without the new parameters and time delay. Begin with the
following parameters:

m=2, s=7, qg=3, B=2, y=5 a=1, k=2, c=2.
Experiment with the parameters m and a. What value of a would

maintain blood glucose concentration in the safe range, whether m=0
(no glucose intake, e.g., when sleeping) or m=3 (constant high intake)?

The equations here are
the same as those in Lab
#1, except that we have
replaced the discrete
time model AG/At and
AI/ At with the deriva-
tives G'and I'.

In Desmos, you can
graph equations like

X2
T Y0

That would help with
the I-nullcline.



|GO2 Insulin-Glucose: Ultradian oscillations
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The figures above display insulin and glucose concentrations under
two circumstances. Figure (A) illustrates a person who eats three meals
in a day. Figure (B) illustrates a person who undergoes a "glucose chal-
lenge", where they consume a large amount of glucose at the beginning
of the time period and none afterwards.

EX. In Figure (B), it seems the insulin and glucose concentrartions are
oscillating while they return to equilibrium. Estimate the period of
oscillation shown in the data.

The period of oscillation is approximately minutes.

EX. Use the Insulin Glucose Regulation simulator to experiment with
time delays. There is a time delay for glucose to have an effect on insu-
lin production. There is also a time delay for insulin to have an effect
on the liver to release glucose. What time delays most closely match
the oscillation you see above? Which of the two time delays seems
most essential to produce such oscillations? Explain how you came to
this conclusion.
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Plots from Figure 1

of Computer model for
mechanisms underlying
ultradian oscillations of
insulin and glucose, by
Jeppe Sturis et al., in
American Journal of
Physiology-Endocri-
nology and Metabolism
(1991).



Osc7 Oscillations: Synthesis

EX. In this lab, we have seen three sources of oscillation. Describe
these three sources, and give one example of each, including state vari-
ables and change equation.

1.

EX. Oscillations can sometimes "drive" oscillations. Consider a system
with state variable X, undergoing a change equation like

X'=0-kX.

Here O is an oscillating variable, such as O(t) = cos(t). Describe a sit-
uation and state variable that could plausibly be modeled by such an
equation. Then draw a time series plot for how you think the quantity
X would behave, given a starting value of X(0) = 0, and paramaters k=0
and k=0.1.



Osc8 Oscillations: Synthesis

A Hopf bifurcation is a situation in which there is a system with a
parameter p, and

1. When p is smaller than a critical value p., the system tends towards
a stable equilbrium point.

2. When p is greater than p., the stable equilibrium becomes unstable,
and system exhibits stable long-term oscillations

EX. Consider a Hopf bifurcation in a system with two state variables
X and Y. Draw pictures of trajectories in state space when p < p., and
when p > p.

EX. Give an example from this lab in which you saw a Hopf bifurca-
tion. Describe the system, its state variables, and the parameter with
critical value.
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Figure 5 from Perrin's Mouvement brownien et grandeurs moléculaires. Perrin observed the ran-
dom motion (Brownian motion) of particles (gamboge, a tree resin used for yellow pigment),
recording their position every 30 seconds. Afterwards, he connected the positions by line
segments; three trajectories are shown above in his figure. The grid squares are 50 microns (1
micron =1 um = 10° meters) in side length.



| ABORATORY 5
RANDOMNESS

Until now, all of our models—written as change equations—have been
deterministic. This means that the current state of the system deter-
mines the future state of the system. The future is determined by the
current state and the change equations.

When our models inevitably fail, we can explain the failure by saying
that the real living world is complicated. We can try to do better, fitting
our model to more data, elaborating our model to better resemble reali-
ty, and we can go back to the lab or the field.

This lab introduces a fundamentally different approach to modeling,
which strays from determinism to incorporate a controlled amount of
randomness. The unrealistically precise predictions of a deterministic
model (e.g., there will be 5000 bacteria after 3 hours) are replaced by
looser expectations of a stochastic model (e.g., we expect there will be
5000 bacteria after 3 hours, and would be surprised if there are more
than 8000 or fewer than 2000).

There are good reasons to put randomness into a model. One is a
perceived futility in determinism. Theoretically, one could perfectly
deterministically model a coin toss, from the position and velocity of
the coin and coin-flipper's hand, the exact contours and mass of the
coin, the temperature and flow of the air, etc. But that is not worth the
trouble, if your interest is not in the physics of coin tosses!

Another reason is to understand robustness. You may have a very nice
deterministic model, change equations that seem to describe reality
pretty well. But will a bit of uncontrollable jitter make your model's
predictions fall apart? Is your model robust to noise, holding up to
life's constant jittering in a useful way? We can test robustness by add-
ing a bit of noise... adding a stochastic term to a deterministic model.

A final argument to study stochastic models is that they are the foun-
dation for understanding temperature and diffusion. On the opposite
page are the random motions of little particles under a microscope.
Understanding them through a stochastic model allowed Perrin (fol-
lowing an idea of Einstein) to determine Avogadro's number. We
can count things (atoms and molecules) that we cannot see, thanks to
stochastic models.
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A stochastic model is

a model which incor-
porates some random-
ness. We will soon add
stochastic terms to our
change equations, e.g.,

X' =2X-¢g,

where € might desig-
nate a "stochastic term,"
like a randomly chosen
number between 0

and 100. This would
describe a typical
exponential population
growth, complicated
with some random
additional number of
deaths during each unit
of time.

Avogadro's number is
about 6.022 x 10%. This
is the number of atoms
of carbon in a pure
sample of 12 grams of
Carbon-12 (the isotope
with 6 protons and 6
neutrons).



RC1 From oscillations to...

Before going into randomness, we take a moment to examine chaos.
Please remember that chaos is NOT the same as randomness! Chaos
can be wild and confusing, but it arises from deterministic systems.

The discrete logistic model is the simplist example where chaos can be
found. In this model, we consider a population P that changes over
time, in discrete time intervals At = 1. The change equation should
look familiar from Lab 3.

AP/At=BP(1-P).

EX. What are the equilibrium points for the above change equation? In
other words, at what values of P will AP/ At=0?

The only parameter in our model is 3, which we think of as a birth rate,
or relative growth rate, for our population, if crowding were ignored.

EX. Set up a spreadsheet, with columns for t, P, At, and AP, with
starting values t =0, P = 0.5, and At = 1 throughout. Use spreadsheet
formulas to find the values of P for time t =0, 1,..., 30, with the param-
eter choices f = 1.5, 2.25, 2.5, and 2.83. Describe qualitatively how the
population behaves for these four parameter values.

In the discrete logistic
model here, we have
made the carrying
capacity 1, for simplic-
ity. The reader may
consider P =1 to mean a
population of 1 million
bacteria, for example.



RC2 Chaos

EX. Load the Discrete Logistic Explorer, and explore what happens Lorenz described chaos
when § = 3.0, and you choose starting values like 0.5 or 0.501 or 0.7 or  as "When the present
0.3. How do small/large changes in the starting value affect long-term  determines the future,
values? Write a sentence or two describing your findings, in light of but the approximate

Lorenz's description of chaos in the margin. present does not ap-
proximately determine

the future."

Source: Unpublished
recollection by Christo-
pher M. Danforth.

The Discrete Logistic Explorer allows you to create a plot like the one
below. The horizontal axis is the birth rate 3. At each birth rate 8, you
can see the long-term behavior by looking at the plot above f. When

p is small, you should find a tendency towards equilibrium. When 8
passes the first bifurcation point, you should find that P oscillates be-
tween two values. After the next bifurcation point, P oscillates between
four values. Then 8, 16, etc., until the behavior of P becomes chaotic.

EX. Label the high-resolution bifurcation diagram below, so that the

values of 3 are clear at the first and second bifurcation points, at the

onset of chaos, and at the three-cycle. Use the Discrete Logistic Explorer A 3-cycle is located at
to estimate these values of by experimentation; change the view win- =
dow to locate the onset of chaos and the three-cycle!

Second bifurcation
point at § =

First bifurcation point

atp=___ \/ \

\\
\Km‘
) R
The onset of chaos at ‘Vi

p=____

v
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RC3 Chaos is not randomness

The following time-series plots arise from the birth rate f = 3.0 in the
discrete logistic model, AP /At = BP(1 - P). The solid line starts at the
value P = 0.5. The dotted line starts at P = 0.501. The difference be-
tween the two plots is invisible until t=8, when they start to drastically

differ.
Discrete Logistic Model, B=3.0
14 .
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—a— Startat0.5 ec®@--- Startat 0.501
These plots exhibit two characteristics of chaos. One characteristic is Lorenz found chaos in
that small differences at one time lead to vast differences in the long the equations related
term. This is the so-called butterfly effect. to weather prediction.

In 1972, he gave a talk
titled, "Predictabili-
ty: Does the flap of a
butterfly's wings in
Brazil set off a tornado
in Texas?"

The next characteristic is determinism: despite the chaotic bouncing
in the above time series plots, there is a strong connection between the
current state of the system and the "next" state of the system.

EX. Choose either the solid line or dotted line above. For each time
value t, place a dot at coordinates (P(t), P(t+1)). We have started the
plot below with dots at (0.5, 1.25) for t=1 and (1.25, 0.3) for t=2. De-
scribe the pattern you see in the plot, after placing 20 dots.

1.5 The visible pattern is...

Next value of P

0 Current value of P 1.5



RC4 A first look at randomness.

What would real randomness look like? Randomness comes in many
flavors, as we shall see. To get started, we consider the following
stochastic model. We have a single state variable P, as before. At
each time step, P goes up or down randomly, by choosing a random
"change" uniformly between -1 and 1.

AP /At = ¢, with € random, uniformly between -1 and 1.

Uniformly random means that there is no particular preference for any
range of numbers within -1 and 1. For example, there is a 50% chance
that ¢ is between 0 and 1, and a 50% chance of choosing a number
between -1 and 0. There is a 25% chance of choosing a number in each
interval (-1,-0.5) and (-0.5, 0) and (0,0.5) and (0.5, 1).

EX. For this uniform random number &, what is the chance that ¢ is
between 0.2 and 0.4? Between -0.35 and -0.3?

EX. The result of choosing ¢ uniformly randomly at each time step is
displayed below, starting with P = 0. In fact, we have run this experie-
ment twice, choosing new random numbers each time, to generate two
time series. Contrast the plots below with the chaos on the previous
page. What visible features distinguish chaos from randomness?

For simulations, com-
puters have sophisticat-
ed random number gen-
erators. For example,
the formula =RAND ( )in
Excel or Google Sheets
generates a random
number uniformly be-
tween 0 and 1.

The formula
=2*RAND( ) -1 gener-
ates a random number
uniformly between -1
and 1.

Two walks, starting at 0, with uniform change-1<e<1

—a— First series  **+®@+++ Second series
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RG1 Linear growth with random rate

Recall that the radius of a tree increases each year, producing a series of
tree rings reflecting its age. This radial growth is approximately linear;
using cross-sections as displayed here, you might estimate the average
rate of growth to be 0.8 mm/year. Thus if R is the radius of the tree, in
millimeters, R is governed by the change equation AR/At = 0.8.

TTTTHIL

But as shown in the figure above, the radial growth of a tree changes Image from Figure 1B

from year to year. A stochastic change equation is of Carroll et al., Mille-
nium-Scale Crossdating
AR/ At = ¢, with ¢ random. and Inter-Annual Climate

Sensitivities of Standing
California Redwoods,

in PLOS One, (2024).
Three dots in ring from

. . . 1960. Additional dots
EX. Looking at the above figure, using the black square as a reference, mark decades. Black

estimate the minimum and maximum width of a tree ring. square is Tmm x Imm.

To make this meaningful, we have to consider the possibilities and
probabilities for this random variable &

Minimum width = and maximum width =

EX. Load the Tree Ring Simulator. This will simulate the radial growth
of a tree, if each year's growth (tree ring width) is chosen uniformly
randomly between a given minimum and maximum. Using your val-
ues of minimum and maximum, how much total growth do you expect
to find after 50 years?

EX. Run the experiment 20 times, to create a histogram of the total
growth found. Use 5 bins, with your expectation in the central bin. Bin Count

Frequency




RG2 Exponential growth with random rate.

E. Coli are grown in a petri dish. Under controlled conditions, you ex-
pect the population to grow exponentially, according to the equation

AP /At = 0.03 P, where time is measured in minutes.
EX. If you start with 1000 bacteria in the dish, describe P(t) as an expo-
nential function of t, in this ideal circumstance. Estimate the doubling

time, using the techniques from Lab 2.

P(t) = Doubling time = minutes.

EX. Even though you try to control their environment, precise control
is never possible in the lab. As a result, during "lucky" and "unlucky"
minutes, the population grows according to the equations:

Lucky: AP/At=0.04P Unlucky: AP/At=0.02P
Give a formula for the number of bacteria, starting with 1000 as before,
after they have x lucky minutes and y unlucky minutes. Hint: how

many times do you multiply P by 1.04? How many times do you mul-
tiply P by 1.02?

P(x,y) =

EX. Use the Rapid Coin Flipper to generate 20 fair coin tosses. Interpret-
ing these as lucky and unlucky minutes, draw a time-series plot of the
population over time, starting with 1000 bacteria.. Use a semilog plot,
as shown below.

400

200

Population

100

Time (minutes)

EX 5.14. If lucky and unlucky minutes are equally likely, how many
bacteria do you expect after 30 minutes? Use the Rapid Coin Flipper and
share with classmates to provide a range of values.
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For plot, it may be help-
ful collect your popu-
lation data in a spread-
sheet with columns for
time t and population P.



Flip1 Probability: Random variables and expectations

Formally speaking, a random variable consists of a set of possible
outcomes, each with a probability. If there are finitely many possible
outcomes, we can describe a random variable with a table.

When the outcomes are numbers, we can talk about our expectation

for the random variable, which is a weighted average of the outcomes.

If our random variable is called R, then our expectation is written E(R)
with the boldface E standing for the word expectation.

E(R) = The sum of all possible (outcome x probability).

If R is the random walk, with outcomes 1 and -1, each with probaility
50%, then E(R) = (0.5)(1) + (0.5)(-1) = 0.5 - 0.5 = 0. Moving to the right
and moving to the left are equally likely, and our "expectation" is that
we end up at zero. Note that our expectation is not a real outcome! It
is just a way of describing an average of possible outcomes.

EX. Let R be a fair die, with outcomes 1,2,3,4,5,6. What are the proba-
bilities, given that the die is fair? What is the expectation E(R)?

Prob(1) = Prob(2) = -.- = Prob(6) =
ER) =
EX. Consider a random variable R, guided by a biased coin. The
outcomes are 10 and -1. The outcome -1 has probability 90%, and the
outcome 10 has probability 10%. What is the expected outcome?
E(R) =
EX. A mold spot is circular with starting radius 10mm and area A.
Every day, the radius has a 50% change of getting 1 mm larger, and a

50% change of getting 1mm smaller. What is the expected radius on
the next day?

What is the area A on the starting day, when the radius is 10mm? What

is the expected area on the next day? This might be surprising!

The fair coin is a ran-
dom variable with table

below
Outcome | Probability
Heads | 50% or 0.5
Tails 50% or 0.5

If a fair coin is used to
determine a random
walk, moving +1 for
heads and -1 for tails,
then each step of the
walk is a random vari-

able.

Outcome | Probability
1 50% or 0.5
-1 50% or 0.5




Flip2 Probability: Expectations and repetition

What happens if we flip a coin two times in a row? There are four pos-  Flipping the fair coin
sible outcomes. Heads then heads, heads then tails, tails then heads, or  twice yields the follow-
tails then tails. We abbreviate them HH, HT, TH, TT. Notice that we ing random variable.
keep track of time, and consider HT and TH are different outcomes.

If our coin flips are independent (the first coin toss doesn't affect the Outcome | Probability
second), then these outcomes are equally likely. HH | 25%
. . . . . . . HT 25%
What if we flip a coin three times in a row? There are eight possible
outcomes, each with probability 1/8, or 12.5% or 0.125. These are TH |25%
displayed in the margin. If coin tosses determine a numerical outcome, TT 25%
we can compute our expectations.
Flipping the fair coin
For gxample, suppose that.we start at 0, and each Head pushes us to three times yields the
the right by 1, and each Tail pushes us to the left by 1. Let L be the final  fo]lowing random
location, a random variable with four outcomes and probabilities. variable.
Location Coin tosses Probability Outcome | Probability
3 HHH 12.5% HHH |12.5%
1 HHT or HTH or THH 37.5% HHT |12.5%
-1 HTT or THT or TTH 37.5% HTH |12.5%
-3 TTT 12.5% THH |12.5%
HTT (12.5%
. . " . "o 2
EX. What is E(L), where L is the random "location" given above? THT |125%
TTH [12.5%
EX. Start at zero, and suppose that each time the coin lands on heads, TTT | 12.5%
you move one unit to the right. And each time the coin lands on tails,
you start back at zero. Tabulate the possible locations after three coin
tosses in a table, corresponding coinc tosses, and probabilities. If R is
the resulting random variable, what is the expected value E(R)?
Location (R) Coin tosses Probability E(R) =
0
1
2
3

EX. Suppose that the coin is now unfair, with a 1/3 chance of landing
on heads. Let N, be the random variable which simply counts the
number of heads (so coin tosses like HTH would yield N,, = 2). Tabu-
late the possible outcomes and probabilities for N,. What is the expect-
ed value E(N,,).

133



Flip3 Sharks and Tuna: Tuna Lifespan

We return to our favorite ocean creatures, the shark and the tuna. They

swim around in the ocean, and when a tuna meets a shark, CHOMP.
We have studied models of shark and tuna, which incorporate their
separate birth /death rates, carrying capacities, interactions, and shark
appetites. But we have not yet considered a question of vital impor-
tance for a tuna: how long might a tuna expect to live?

EX. Suppose that by the end of each year, a tuna has a 50% chance of
being eaten by a shark. Tabulate the possible life-spans of a tuna, and
their corresponding probabilities. Hint: consider being eaten by a
shark as a coin-toss, and complete the following table. (Note we have
"rounded up" the lifespan.)

Lifespan (yrs) Coin tosses Probability
1 T 50%
2 HT 25%
3 HHT
4 HHHT
5 HHHHT
6 HHHHHT

EX. Using this table, what is the expected lifespan of a tuna? To
answer this quesetion, express (Lifespan x Probability) as a fraction in
each line of the table, and find the pattern. Add at least 10 terms (lifes-
pans up to 10 years) to get a good estimate of expected lifespan.

EX. Out of 1000 tuna, how many do you expect to survive for 5 years
or longer?

EX. In a safer region, a tuna has a 10% chance of being eaten by a shark

each year. What is the expected lifespan of the tuna there (assuming
their only cause of death is sharks)?

Note that after the tuna
dies, we do not have
to flip a coin. But one
could play this game
by flipping a coin 6
times. All outcomes
beginning with "T"
yield a lifespan of 0
years. All outcomes
beginning with "HT"
yield a lifespan of 1
year.



Flip4 Growth and collapse

Growth may be a smoothly controlled process in the lab, but in nature
there are inevitable (if infrequent) disasters. Consider the following
process, for a state variable X and its change over time:

1. X starts at zero.
2. Each "good moment," X increases by 1.
3. Each "bad moment," X collapses back to zero.

EX. Describe a situation, with a single quantity X, which may be rea-
sonably modeled by the process above.

EX. Imagine good moments and bad moments correspond to Heads
and Tails from coin tosses. If your sequence of coin tosses is HTTHT-
THTTHTHHHHTTHHTTHHHTHHTHHHTHHHH, then what is the
final value of X and why?

EX. Run the Growth and Collapse Simulator, with 90% probability of
growth. This runs the simulation for 100 time units, 500 times in a row
(effectively 50,000 coin tosses!). Sketch the resulting histogram below.

EX. Experiment with parameters in the Growth and Collapse Simulator.
Describe consistent patterns you notice about the bar heights in the
histograms.
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Yule1 The Yule birth process

Now we revisit our old friend, a dish of E. Coli. We have studied a

pure exponential model of growth, and more recently an exponen-

tial model of growth where the birth rate has a stochastic (random)
element. Here we study an exponential model of growth where the
randomness is built into the individual.

Begin with 10 bacteria. Suppose that, each minute, each bacterium has
(independent of each other!) a 5% chance of division.

EX. After the first minute, what is the probability that you still have 10
bacteria, i.e., none have divided? Hint: a 5% chance of division im-
plies a 95% chance of no division. Use a calculator and the hint in the
margin.

EX. Use the Rapid Coin Flipper, with Heads representing division (5%
probability), to predict the outcome for the 5 bacteria after one minute
(5 coin tosses). Then repeat, with as many coin tosses as necessary, to
track the divisions for 5 minutes. Draw a tree, with time proceeding
from left to right, to display this information. Highlight one lineage
within this tree (the descendants of one starting bacterium).

EX. Consider the related model, in which precisely 5% of the bacte-
ria divide during each unit (minute) of time. (In this model, you are
allowed to have fractional bacteria, like 10.5 bacteria.) If the starting
population is 10 bacteria at t=0, what is the formula for the population
at time t? This should exhibit exponential growth!

P(t) =

EX. Now, consider what this would look like on a semilog plot. What
is the formula for log, (P) as a function of t? It should be linear!

log, (P(t)) = t+

Modeling populations
at the individual level
is called agent-based
modeling.

If p is the probability
of something happen-
ing once, then p?is

the probability that it
happens in two inde-
pendent cases. And p°
is the probability that it
happens in three inde-
pendent cases.

X
AL
B [

A sample tree, starting
with 2 bacteria, A and B.
A divides first, into X
and Y. Then X divides
at the same time as B,

while Y never divides.
The result is 5 bacteria.



Yule2 Stochastic birth and death process

The Yule Process Simulator carries out a stochastic process, allowing
each cell to divide with one probability, and die with another probabili-
ty (deaths occur before divisions) during each time interval.

EX. Enter a division probability of 5%, and 0% death probability, and

starting population 10. The simulator will show the results of numer-
ous trials, with time series for P(t). Compare the results in the simula-
tor to the exponential growth you might expect. Focus on the semilog
plot, and the slopes you find in the simulator.

EX. Experiment with death probabilities and starting populations.
What phenomena appear in the stochastic Yule Process Simulator that
you cannot find in an exponential model? Describe these phenomena
and when they may occur.

EX. In the laboratory, you carefully prepare 20 wells with 10 bacteria in
each well. They are kept in identical conditions, and allowed to grow
for 2 hours. Your colleague then looks at the wells for the next step in
the experiment, and notices that some wells have twice, or even three
times, as many bacteria as others! They say that you must have messed
up in your preparation. How would you respond based on your expe-
rience in the above exercises?
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See G. Udny Yale, A
mathematical theory of
evolution, based on the
conclusions of Dr. ]. C.
Willis, ER.S., in the Phil-
osophical Transactions
of the Royal Society of
London. Series B (1924).

Rather than modeling
the division of bacteria,
Yule was interested in
speciation: the evolu-
tionary events when

a population of one
species splits into two
species.

|

“F
A
X

Above: A 96-well plate,
a dependable work-
horse of the lab. There
are 8 rows (A-H) and
12 columns (1-12) for 96
samples.



GD1 Genetic drift

When we encounter evolution, we often learn first about natural se-
lection as the mechanism. According to this mechanism, if a heritable
trait offers a fitness advantage, the organisms with this trait will be
more likely to reproduce and pass the trait onto its offspring, gradually
causing the trait to be more common. What is necessary is variation in
heritable traits, and differences in reproductive success.

Genetic drift is about what happens in the "neutral” setting, where
there is variation in heritable traits, but no difference in reproductive
success. This is another mechanism for evolution, which must be stud-
ied alongside natural selection.

Banana slugs (Ariolimax columbianus) are wonderful large yellow slimy
organisms which can be found in the redwood forests of California and
Oregon. Some have spots and some do not. It has been hypothesized
that the spots are a heritable trait, and may offer a fitness advantage
via cryptic coloration, hiding them from predators. To study this, one
should compare this hypothesis of fitness advantage to the neutral
hypothesis where spots have no effect on fitness.

Consider a population of 50 banana slugs, among which 10 have spots.
This population is in equilibrium; each year, each banana slug pro-
duces two surviving children (for a total of 150 slugs). But 100 banana
slugs also die each year, bringing the total back down to 50. The deaths
are completely random. Spotted slugs always have spotted offspring.
Nonspotted slugs always have nonspotted offspring.

EX. After one year, you have 50 banana slugs again. What is the few-
est you could find with spots? What is the most you could find with
spots? How many would you expect to see with spots and why?

EX. Imagine now that a virus kills all but 5 banana slugs, 2 with spots
and 3 without. If all 5 slugs have two surviving children (making 15
slugs total), and then 10 die, could the remainig slugs all have spots?
Draw a diagram to illustrate how.

In evolutionary biolo-
gy, fitness refers to the
probability of having
surviving offspring. So
fitness does not mean
"being stronger." It
could mean better
hiding from predators,
caring for eggs, etc.

See "Spotted Banana
Slugs, Ariolimax colum-
bianus, and Canopy
Cover," a poster by Sash
Milstein at ideaFest
2023. https:/ /digital-
commons.humboldt.
edu/ideafest2023/14/

Banana slugs are
hermaphrodites with
fascinating mating hab-
its. After impregnating
each other (both can get
pregnant after mating),
they lay up to 30 eggs,
some of which survive
to maturity.



GD2 Genetic drift: The Wright-Fisher Model

Load the Genetic Drift Simulator. We stay with the illustrative example
of spotted and not-spotted banana slugs. The simulator will progress
through 300 generations of births and deaths, where the total popula-
tion remains the same. One can track the subpopulations of spotted
and nonspotted banana slugs.

EX. Begin with 70% spotted and 30% nonspotted slugs. Beginning
with a total population of 100, study what happens in the simulation.
Try clicking the "Simulate" button multiple times. How often does
fixation occur, where at the end there is only one type of banana slug.
Answer with an estimated frequency (like 10%? 90%) of fixation, based
on many simulations.

EX. How does the initial population affect the likelihood of fixation?
Explain with a few precise examples.

EX. A researcher finds that the banana slugs of Corvallis, Oregon are
all spotted, while the banana slugs of Felton, California are all nonspot-
ted. Provide a neutral explanation in terms of genetic drift. What fac-
tors would make such a neutral explanation more or less likely, based
on exploration with the Genetic Drift Simulator?
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Our model here is a ver-
sion of the Wright-Fish-
er model, a common
starting point for stud-
ies of genetic drift.

One typically learns
about this in the setting
of allelic frequency,
but we are avoiding
such important genetic
technicalities.



Temp1 Temperature: The kinetic theory of gases

Temperature is something we can all feel, because we have specialized
neurons to sense temperature. We can measure temperature with all
sorts of thermometers. What we feel and measure as temperature

was mysterious for a very long time, though even in the 1680s, Robert
Hooke argued (correctly!) that

Now Heat, as I fhall afterward prove, is nothing but the internal Mo-
tion of the Particles of Body

It would take almost 200 years for this to be made precise, when Max-
well brought probability into physics. This is what we do here, to
understand this thing called temperature.

Indeed, we now know that stuff is made of molecules. In a gas, these
molecules are flying, spinning, vibrating, all over the place. The tem-
perature of the gas reflects all that wild motion. We focus on the speed
of molecules here.

According to Maxwell and Boltzmann, each molecule in a gas is going
through a random walk. Atany moment, it is moving in a random
direction in space. And, it is moving at a random speed. This random
speed is not uniform (it is not a "random number between 0 and 100
miles per hour"). Instead the speed probabilities depend on tempera-
ture according to the following continuous probability distribution.

3/2 )
V2 emv /ZkB T'

Pv)=C (5 )
2kgT
Here C is a constant which won't concern us. The variable v is the
speed of a molecule of gas, and m is the mass of the gas molecule. The
most interesting constant is kg, called Boltzmann's constant. And T is
the temperature, in degrees Kelvin.

Probability

Typical slpeed Speed (meters per second)
The peak of the probability distribution (the curve above) locates the
most frequently found speed, which we call the typical speed.

EX. Look up Boltzmann's constant and the mass of an oxygen mole-
cule O, in kilograms. Convert room temperature to degrees Kelvin.
Use Desmos to graph the function P(v), and find the typical speed of an
oxygen molecule, in meters per second and miles per hour.

The typical speed of an oxygen molecule at room temperature is

m/s, or miles per hour.

From Hooke, Lectures on
Light, read in May 1681,
and published posthu-
mously in 1705.

To convert Celsius to
Kelvin, add 273. So
20°C =293°K. Kelvin
is used because 0°K is
"asbolute zero," a the-
oretical state in which
everything is stationary.

What we call the typical
speed is what statisti-
cians call the mode of
the random variable.
The average speed is a
bit different, but the two
are proportional in this
context.



Temp2 Temperature and the typical speed of molecules

EX. Keeping Desmos open, allow the temperature parameter T to vary
between 150°K and 300°K. Collect data in the margin, to relate the tem-
perature to the typical speed of a molecule. Using a log-log plot (in the
Data Plotter with Log Scaling), find a power function relating the typical
speed of an O, molecule to the temperature T.

Typical speed = X T——
EX. Ozone is the molecule O,, so its mass is 3/2 the mass of typical ox-

ygen gas O,. How does the typical speed of ozone molecules compare
with the typical speed of oxygen molecules at the same temperature?

EX. Summarize the relationship between the temperature of a gas, the
mass of a gas molecule, and the typical speed of a gas molecule.

EX. Gas molecules do not fly in straight lines forever. They frequently

bounce off each other, in random directions. This is why we will model

the situation with a random walk. Let At be the average amount of
time each molecule travels between collisions. How do you think that
At relates to the density of molecules N (the number of molecules per
liter)? How do you think At relates to the temperature T of the gas?
Explain your answers.
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In Desmos, click the
wrench icon to adjust
the y-axis range to be
very very small!

Tempera-
ture

Typical
speed




Temp3 Temperature and equilibria

Consider the bistable system, with a quantity X and change equation Recall that a one-vari-
able system is bistable
AX /At =X - X5, if it has two stable equi-

librium points.

EX. Draw the phase portrait for this system, showing all three equilibri-
um points (with values of X) and their stability.

EX. With starting value X = -0.1, describe the long-term behavior.

Now imagine the system has a stochastic component, which leads to a
change equation

AX/At=X- X+ ¢, where ¢ is a random velocity.

EX. Imagine ¢ is chosen by a coin flip: Heads means ¢ = 0.1, tails
means ¢ = -0.1. If the system starts at the equilibrium point X = -1,
could it end up near the equilibrium point X = 1? What if it starts at X
=-0.1? Use the Rapid Coin Flipper to experiment, and use this experi-
ment to explain why or why not.

EX. Suppose that the system is at a higher temperature, so the random
velocity ¢ is larger. Now heads means ¢ = 0.5 and tails means & = -0.5.
Could the system escape the equilibrium point X = -1 and end up near
X=1? Explain what would need to happen.



Temp4 The atmospheric random walk.

In the atmosphere, air molecules (N,, O,, etc.) undergo a random walk
as they fly around bouncing off each other. But there are two interest-
ing complicating factors. One is that gravity makes them move down-
wards a bit more often than they move upwards. And second, there is
solid stuff called the ground, which molecules bounce off of.

For a simplification, use the Rapid Coin Flipper to simulate the following

process. Start at altitude A = 3. Every time the coin is heads, move up
1. Every time the coin is tails, move down 1. But if the coin is already
at 0 (the ground level), the coin must move up. The state variable A
cannot be less than zero.

EX. Using a fair coin, and 10 simulations with 20 flips each, what are
the 10 final values you find. Start at A=3 each time.

Simulation 1 2 3 4 5 6 7 8 9 10
Final altitude

Repeat the experiment, where the coin has a 60% chance of tails, simu-
lating a bit of gravitational preference to move down.

Simulation 1 2 3 4 5 6 7 8 9 10
Final altitude

EX. Run the Atmospheric Molecule Simulator with 100 molecules. How
do gravity and temperature affect the vertical velocities? And how
do gravity and temperature affect the final vertical distribution of the
molecules; are there more near the surface or higher up?
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A sequence of 10 flips
HTHHT TTHHH
would yield altitudes

3,43,454,3,2,34,5.

A sequence
TTHTT TTHHT
would yield altitudes

3,21,21,0,1,0,1,2,1.

Note that the boldface
"T" corresponds to an
altitude change from 0
to 1, since A must move
up when A hits 0.



BM1 Brownian motion

Brownian motion is named for Robert Brown, who observed pollen
grains in water under a microscope. These grains constantly wiggled,
and the wiggling never seemed to stop. Brownian motion, we now un-
derstand, is a stochastic process caused by zillions of molecules bounc-
ing all over the place, colliding with each other at all sorts of angles and
speeds. A grain of pollen, much larger than a molecule, is bombarded
by so many jiggling molecules that it too acquires a random wiggling
that Robert Brown observed.

Brownian motion occurs in all natural situations where molecules are
able to move around. In a typical room, each cubic centimeter of air
contains about 2.5x10' molecules, or about 25 million trillion mole-
cules. These are whizzing about very quickly as you found before, and
there are about 10%, or about a billion trillion trillion, collisions each
second. This is the source of Brownian motion in a gas.

In a typical glass of water, each cubic centimeter of water contains
about 3.3x10%2 molecules. These molecules stick to each other a bit,
making it a liquid. But they still try to zoom about and collide with
each other. Within the cubic centimeter of water, there are about 10%
(a trillion trillion trillion) molecule collisions every second. This is the
source of Brownian motion in a liquid, and it causes larger particles to
bounce around too.

EX. A typical human cell has a mass of about 1 ng (nanogram), and
about 70% of that mass is water. Estimate how many molecules of wa-
ter are contained in a human cell.

In 1905, Einstein combined the theory of Brownian motion, the relation-
ship between temperature and molecular motions, and work of Stokes
on viscosity for particles moving in a liquid. The result was a concept
for an experiment... one that could prove (or disprove) the existence of
molecules, and effectively count molecules without ever seeing them.
Such an experiment was carried out a few years later by Perrin, ob-
serving the Brownian motion of tiny particles of tree resin. Equipped
with a camera lucida to record his observations, Perrin painstakingly
tracked the motion of hundreds of these particles. You will recreate his
experiment here with the aid of the Brownian Motion Simulator.

EX. Within the simulator, what effect does temperature have on the
Brownian motion of a particle? Challenge: At what temperature do
you expect the Brownian motion to be twice as fast as at 20°C?

See Robert Brown, A
brief account of microscop-
ical observations made in
the months of June, July
and August 1827, on the
particles contained in the
pollen of plants; and on
the general existence of
active molecules in organ-
ic and inorganic bodies,
published in the Phil-
osophical Magazine,
1828.

One cubic
centimeter
looks like this
box.

These estimates comes
from Feynman's Lectures
in Physics, Lecture 41.



BM2 Perrin's experiment

Now you will carry out Perrin's experiment with the Brownian Motion The units of viscosity
Simulator. Set the particle radius to 0.5 microns, viscosity 1 centiPoise, ~ here are centiPoise (cP).
and temperature to 20°C. Click the Diffuse button, and after 10 sec- Itis convenient because
onds, the Get Data button. This should produce a table of x,y coordi- 1cPis the V:SCOSIW of
nates, and the squared-displacement d* = x> + y2. water at 20°C. In SI
units, 1cP =102 Pa s,

EX. Create a spreadsheet, with a header row for time and first col- where Pa. = Pascals,
umn to label experiments. Each experiment is a 10-second run of the the ST unit of pres-

Brownian Motion Simulator, with the same particle size, viscosity, and sure, and s = seconds.
temperature throughout. Record the squared-displacements for each
experiment in its row. The result should look like the sample below.

A B C D E F G
1 Time 0 1 2 3 4 5
2 Experiment 1 0 0.85 0.19 0.24 1.09 1.04
3 Experiment 2 0 0.61 0.33 1.29 4.87 2.19

After including at least 15 experiments (rows), create a new row

for the averages. For this, use a spreadsheet formula like =AVER-

AGE (B2:B20) to average the cells in each column B2, B3, ..., B20.

Make sure to average the experiments (squared-displacements) and not
the time!

Use this final row of averages to create a plot with time on the horizon-
tal axis, and average squared-displacement on the vertical axis. In-
clude a best-fit line, as well as your data points. Record the slope of the
best-fit line, and draw everything below.

Slope of line is

Squared-displacement d*= x*+y?

> Time (sec)

EX. Compare your slope to other groups working on this problem.
What range of slopes do you find, and how many experiments did the
other groups perform?
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BM3 Einstein-Perrin to Boltzmann

In Einstein's 1905 doctoral thesis, he found that the squared-displace- Einstein, On the move-

ment can be expected to grow linearly over time, and moreover the ment of small particles

coefficient for this linear growth depends on temperature (T), particle suspended in stationary

radius (r), and viscosity (). There was also a constant, then unknown, liquids required by the

called ky molecular-kinetic theory of
heat, 1905.

E(x* +y?) = (31:_](33;] )xt

nis the lowercase Greek
letter eta. Draw it be-
low for practice.

EX. Why do you think T is on the top of the fraction, while r and 1 are
on the bottom of the fraction?

EX. In an individual experiment, did you find that squared-displace-
ment grew linearly over time? Why do you think we averaged over 15
or more experiments?

EX. On the previous page, you found the slope of the line relating
squared-displacement to time. Recalling that x and y were measured in
microns, what is the slope in m?/sec (square meters per second)?

T=20°C= °K
EX. By Einstein's formula, your slope equals kyT/3mtrr. Use your
results to estimate Boltzmann's constant, in the units below. Fill in the r=0.5um = m
blanks in the margin to help with unit conversions.
n=1cP=.001 kg/ms
kg = m?kg / s*°K

EX. Compare your estimation of kg to a value you look up. Write
down this "real" value, and describe your error with a percentage.



BM4 Boltzmann to Avogadro. Synthesis

EX. The ideal gas law states PV = kg N T, where P is the pressure, V the
volume, N the number of molecules, and T the temperature of a gas.
Which of these quantities can be directly experimentally measured?
For each such quantity, what is the name of the instrument one typi-
cally uses for measurement.

EX. Carbon dioxide is widely available in solid form, as dry ice. It For this, you will need
sublimates to form carbon dioxide gas at room temperature. In the to convert units. Note
laboratory, 44 grams of dry ice is allowed to sublimate into an empty that:

(vacuum) 1 Liter container at 300°K. The result is 44 grams of CO, gas
in a 1L container. The container is attached to a pressure meter, which
records a pressure of 2,500,000 Pascals.

1Pascal=1kgm/s
1 Liter = 0.001 m?

Use your estimate of Boltzmann's constant to estimate N, the number
of molecules in the container, showing key steps in your work below.

EX. Compare your result to Avogadro's number. How close is it, and
why should it be close?
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Figure 3 from Population biology of infectious diseases: Part I, by Anderson and May (Nature 1979).
This is a typical diagram for a compartmental model, where individuals travel from one com-
partment to another according to formulaic (often stochastic) rules and parameters.



| ABORATORY 6
ORDER

In this final laboratory, we will study models that arise when individu-
als migrate between a few compartments, according to a consistent set
of probabilistic rules. These are Markov chains, which have applica-
tions across physical, biological, and social sciences.

For example, students in our class are either sick (too sick to attend
class) or healthy (healthy enough to attend class). The two compart-
ments are "sick" and "healthy". As students get sick and (hopefully)
recover, they migrate between these compartments. This would be a
Markov process if their health were determined by random variables;
e.g., if each day, every healthy student has a 5% chance of getting sick,
and inversely, every sick student has a 20% chance of recovering.

Another example: ion channels can be open or closed. On a single cell,
there may be thousands of ion channels, migrating between the open
and closed compartments.

Another: A particular location in DNA (e.g., the genomic coordinate
chr1:1234567) can be occupied by four nucleotides, abbreviated A, T, G,
and C. The coordinate may migrate (via mutation) between these four
compartments.

EX. Describe one more biological example, where an individual (or-
ganism, cell, molecule, etc.) migrates among compartments. Describe
the example, and the particular compartments.

The structures of life, from DNA to the brain to the ecosystem, emerge
from multitudes of similar individuals, behaving randomly. The emer-
gence of order is the subject of this last chapter.
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Osm1 Osmosis: A tale of two compartments

Osmosis is a strange phenomenon that is central to the functioning of
cells, the growth of plants, and more. The basic setup requires two
physical compartments, which we call A and B. There are two kinds
of molecules, a solvent (e.g., water), and a solute (e.g., sucrose) which
dissolves.

These two compartments, A and B, are separated by a semiperme-
able membrane, which means that solvent (water) molecules can flow
through the membrane in either direction (the "permeable" part), but
solute molecules (sugar) cannot flow through the membrane.

If compartments A and B are filled with pure water, and sugar is placed
into compartment B, the sugar is forever trapped in compartment B.
But a remarkable thing happens... the water seems to flow from A to B!
This is called osmosis and it can be precisely measured.

Add sugar
l B
A B A B
A
H,O H,O H,0 H,O and H,0 H,O and
sugar sugar

»
>

Water moves!

To think about this system, consider a setup where compartments A
and B initially contain 1000 water molecules each. Water molecules
freely dance between compartments A and B without preference. Then
sugar is poured into compartment B. Suddenly, the water molecules
"prefer" compartment B.

EX. Suppose that each second, each water molecule in compartment A
has a 20% chance of moving to compartment B. But each water mole-
cule in compartment B has a 10% chance of moving to compartment A.
Starting with 1000 molecules in each compartment, how many mole-
cules do you expect in each compartment after one second?

in compartment A, and in compartment B.

EX. How many do you expect in each compartment after two seconds?
After three seconds? Tabulate your answers below.

Time Compartment A Compartment B
0

1 sec

2 sec

3 sec

A picture of an appara-
tus designed by Pfeffer,
to measure the pressure
due to osmosis. Figure
1 from Osmotiche Un-
tersuchungen, published
in 1877. Itis a more
sophisticated version
of the U-tube diagram
shown here.



Osm2 Equilibrium in compartments

Equilibrium in this system occurs when the number of water molecules
making the transition from A to B equals the number of water mole-
cules making the transition from B to A.

Let A be the number of water molecules in compartment A.
Let B be the number of water molecules in compartment B.

EX. Equilibrium occurs when 0.2 A = 0.1 B. Briefly explain why this is
true, and find the number of molecules in each compartment at equilib-
rium. (Note we begin with 2000 waer molecules!)

EX. Load the Two-compartment Markov Chain Explorer, and enter the giv-
en transition probabilities. Use this to sketch time-series plots which
show the number of molecules in compartments A and B over time and
the equilibrium you have found.

EX. How would the time series plots change if water molecules in
compartment A moved to B with probability 40%, while molecules in
compartment B moved to A with probability 20%?
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Note that we do not
care about the sugar
molecules in this model!
They stay in compart-
ment B always. In prac-
tice, the concentration
of the sugar solution
directly affects the tran-
sition probabilities.



LA1 State vectors and transition matrices

Compartmental models are general and powerful, and the underlying ~ These two pages pro-

mathematics involves vectors and matrices. Vectors and matrices are vide an introduction to

fundamentally ways of packaging a few numbers into a box. For vec- ~ anarea of mathematics

tors, we package the numbers into a column. For matrices, we package ~Ccalled linear algebra,

the numbers into a rectangle (usually a square in this class!) which is all about vec-
tors and matrices.

In our two compartment system, the state of the system required two

numbers called A and B, representing the number of individuals in

compartments A and B. The state of the system can thus be packaged

in a vector. The initial state of the system had 1000 molecules in com-

partment A, and 1000 in compartment B. When we package this as a

state vector, it looks like this:

1000
1000

EX. Looking back at the previous pages, represent the state of the sys-
tem after 1 second, 2 seconds, and 3 seconds, using three vectors.

The initial state of the system was: (

A square matrix is a square arrangement of numbers. We can use a

square matrix to package all of the transition probabilities. In our first

system, a molecule from compartment A had a 10% chance of moving

to compartment B. A molecule from compartment B had a 20% chance

of moving to compartment A. Thus a molecule in compartment A has

a90% chance of staying in compartment A. And a molecule in com-

partment B has a 80% chance of staying in compartment B. These four

numbers are packaged into our transition matrix. There is a 20% chance
FromA B / that a molecule moves

A 09 0.2 from compartment B to
To... B 0.1 0.8 compartment A.
EX. Suppose that the transition probability from A to B is 30% and the
transition probability from B to A is 5%. What is the transition matrix?

EX. What is the sum of the numbers in each column? What is the sum
of the numbers in each row? Why do you find something in columns
but not rows?



LA2 Matrix and vector arithmetic

Vectors can be added, according to the following definition. We will frequently use
the following properties
(x) 4 (u) _ (X+u) of matrix / vector multi-
y \Y y+v plication and addition.

EX. Imagine you start with 1000 molecules in compartment A and 1000
in compartment B. You then add 500 molecules to A and 300 to B. Ex-
press the result as a vector addition fact, in the form above. M-(X+Y) = M-X + MY

(}888) - ( ) - ( ) Associative law:

(M:N) -X=M (N -X)
Let M be a square 2x2 matrix. Let X be a 2-dimensional column vector.
This means that M packages 4 numbers in a square, while X packages
two numbers in a column. Mathematicians created a way to multiply
these two packages together, to form a product M - X.

D) -Er)

EX. Using the multiplication formula above, compute the product
09 0.2Y . (1000) _ ( )
0.1 0.8 1000

EX. How does this relate to the computations on page Osm1?

Distributive law:

EX. Let M be the transition matrix, and X the initial state vector, as
displayed in the margin. Compute the following, filling in the blanks. M= (0.9 0.1)
You may want to do the drills on the next two pages first! 0.2 0.8

1000
1000

(M.M).X:( (0.9 02) . (09 02) ) 1000 ),(1000):( )
0.1 0.8 0.1 0.8 1000 1000

v G (G G- Gren) € )-C )

EX. How does the vector M - (M - X) relate to the exercises on Osm1?
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LA3 Drill: Vector and Matrix Arithmetic

EX. Vector addition. Add and subtract the following vectors.

() (-0 O)-0)-___

GG 600

To draw a vector (]i) , draw an arrow from (0,0) to (a,b) in the Cartesian plane.

EX. In the following, draw both given vectors X and Y and their sum X+Y. Then draw dotted
lines from X to X+Y and from Y to X+Y, to illustrate the parallelogram property.

GO0 0@ 0

.

(0,0)

0,0) (00)

Recall that a matrix and vector are multiplied by the following rule.

(a b) . (x) _ (ax+by)
cd y ox +dy

EX. Use this rule to compute M - X, for the following matrices M and vectors X.
DO )R 60
01 2 10 1 24 -1

M- X= M- X= M- X=

EX. Suppose that (0'6 0‘4) : (X) = (X) and x+y = 100.
0.2 0.8 y y

What are the values of x and y?



LA4 Drill: Matrix multiplication

We have seen two operations so far:
Vector + Vector = Vector. Matrix - Vector = Vector.
We finish with the most complicated operation:
Matrix - Matrix = Matrix.
Let M and N be square 2x2 matrices. They can be multipled to form a
square 2x2 matrix M - N. To find the top-left entry of M ‘N, one "dots

together" the top row of M with the left column of N. The pattern
takes a bit of practice.

(a b) . eli) _ (ae+bg af+bh)
cd ce +dg cf+dh
EX. Multiply the following 2x2 matrices.

GG GDCED-___

When M is a square matrix, we can multiply M by itself, and M - M

will be another square matrix. This is called M?. We can multiply M by

itself again, to form M:-M-M, which is naturally called M°.

13
01

Find a pattern to give a formula for M" when n is any whole number.

EX. LetM = ) . Compute M? and M>.

M2 = M3 = Mnr =

EX. LetM = ((1) i) and N = (i (1)) Compute M - N and N - M.
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More generally, one can
multiply a p by q matrix
(p rows and q columns)
with a q by r matrix (q
rows and r columns),
and the result will be a
p by r matrix.

We have boldfaced the
top row (ab) of M and

the left column (e)
of N. g

To "dot them together,"
refers to the dot product
ae + bg.

Matrix multiplicaiton is
not commutative!

It is rarely true that
M:N=N-M

Matrix multiplication is
associative, i.e.,

M-(N-R) = (M:N)-R,
for any three matrices
M,N,R.



IC1 Equilibrium: Open and closed channels.

Cell membranes are covered with channels. Most channels are ion There are also aquapo-
channels, allowing charged particles like sodium ions (Na*), potassi- rins, which shuttle wa-
um ions (K*), Chlorine ions (CI'), hydrogen ions (protons, H*) to pass ter molecules through
through the cell membrane. A single ion channel can maintain a flow the cell membrane!

of millions of ions per second, creating a measurable electrical current.
A single cell can have thousands of ion channels, of hundreds of types.

Physically, these channels are large proteins which form a tunnel across  Most channels have a
the cell membrane. Channels can be gated, meaning opened or closed,  variety of "open" and

either by voltage changes, or by binding a molecule. "closed"” states, but we
just consider two.

Single-channel openings
Channel closed
2 pA
“MWWMWMhamd open ___ |

_ = 10ms

) Period of GABA binding "~ Figure 2(c) of Sin-

. i gle-channel recording of
A patch clamp technique can measure the current through a single ligand-gated ion chan-
ion channel, yielding a pattern like the one displayed above. When nels, by Mortensen and

the graph is down low, it reflects the ion channel being open, allowing  Smart, (Nature Proto-
the current to pass through. When the graph is up high, it reflects the ~  cols 2007). Reproduced
ion channel being closed. At the beginning and end of the time period ~ with annotations.
shown, the channel is closed. The burst of downward activity here

reflects the binding of GABA to a receptor, opening the channel. The S unit of current is

the amp or ampere. A

. . o . current of 1 amp can be
EX. During the period of GABA binding, how much time does the deadly (and 0.01 amps

channel spend open? And how much closed? Estimate your answer in ;¢ painful). The current
milliseconds, using the scale to the right of the graph. (Hint: 10ms is through a single ion

about a pinky-width!) channel is measured in
picoamps. 1 pA=10"
amps.

EX. During the period of GABA binding, the channel is closed a few
times. How many such closed periods do you see? How long do those
closed periods last? Estimate your answer in milliseconds.

EX. During GABA binding, the behavior of a channel is somewhat ran-
dom, with one probability of going from open to closed, and a different
probability of going from closed to open. Which transition do you
think is more likely here?



IC2 Simulation: lon Channels

Load the Ion Channel Simulator. This will provide a simulated patch-
clamp recording, based on transition probabilities you provide.

EX. How are the two transition probabilities (probability of open-to-
closed and closed-to-open) related to the total time that the ion channel
is open? Answer this by holding one probability constant and dou-
bling or tripling the other, to see the effect.

EX. Begin with the two transition probabilities at 10% and 20%. What
happens if you double these probabilities to 20% and 40%, or triple
them to 30% and 60%? How does that change effect the patch-clamp
readout?

EX. By exploration, find transition probabilities which could reason-
ably explain the real patch-clamp recording on the previous page.

Probability of open-to-closed transition:

Probability of closed-to-open transition:

EX. A single ion channel generates a current of 2 pA (picoamps) when
itis open. If the ion channels on a cell are open 70% of the time, inde-
pendently of each other, how much current would flow through the
cell membrane with 1000 ion channels?
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This simulator is built
to randomly switch
between open and
closed states from your
provided probabilities.
It also adds a little bit
of "Gaussian noise" to
simulate the random
wiggles that you might
find it a real patch
clamp recording



IC3 Equilibrium: Matrix Model

In a matrix model, the state of a system is represented by a vector X.
The state of the system changes, from one moment to the next (with
some time interval At), by multiplying X by a transition matrix M.

Consider a cell with 1000 ion channels that can be open or closed. We
model their state by a vector with two numbers: how many channels
are closed and how many are open. If the cell begins with all channels
closed, then...

The initial state of the system is X = (10000).

If the cell gets an appropriate signal, e.g., from an agonist, the state will
change. Each millisecond, closed channels will open with probability
10%; and open channels will close with probability 1%.

0.9 0.01
0.1 0.99

EX. After 1ms, the state is called X,. Our expectation for this state is
given by the vector X, = M-X. Compute this matrix X,.

The transition matrix is M = (

EX. After 2ms, the state is called X,. Our expectation for this state is
given by the vector X, = M-M-X. Note that this is also M-X,. Compute
this vector X..

A state X will be in equilibrium if X = M-X. This can be converted into
a system of linear equations as follows.

If X = (5) is the unknown equilibrium state, the condition X = M-X

can be expanded as

(0.9 0.01) (u) 3 (u)

0.1 0.99 v/ \v/

EX. Multiply the matrix and vector on the left side. Use this to find a
system of two linear equations in the two variables u and v.

The total population of ion channels does not change. Express this fact
as a third linear equation.

u+ V=

The subscript 0, in X,
refers to the state at
time zero.

An agonist is a mol-
ecule which binds to

a receptor, setting off

a physical process
which opens an ion
channel. Ion channels
controlled this way are
called ligand-gated ion
channels.



IC4 Equilibrium and ratio: Markov Models

In a Markov chain, the transition matrix is a
matrix of probabilities (numbers between 0
and 1), whose columns add up to 1. If there
are two compartments, the transition matrix
has the form

M- (1
p I -q
Here p is the probability of an A-to-B transi-
tion, and q is the probability of a B-to-A tran-
sition. An equilibrium state is where M-X = X.
In other words,

= ()= (7 ) 0)-C)

Theorem: If the ratio u:v equals the ratio q:p,
then X is an equilibrium state for M.

On the previous page, we considered a transi-
tion matrix where the closed-to-open probabil-
ity was p=10% and the open-to-closed proba-
bility was q=1%.

EX. Suppose that X = (3) is an equilibrium

state. Using the above values of p and q, what
is the ratio u:v?

EX. If there are 1000 ion channels, what is the
equilibrium number of open and closed chan-
nels, using this ratio? (Round to the nearest
whole number)

EX. (Challenge). If u:v = q:p, then u = qc and
v = pc (for some constant c). Multiply M-X,
to show that M-X=X. This proves the above
theorem.

(7))

EX. Ratio drill!

Fill in the blanks to find ratios equal to 2:3

Sample: 4:6 6:
10:_ 30
70:__ 2000:

Fill in the blanks to find ratios equal to 4:1.

Sample: 12:3 2
400:__ 1:
300: :150

EX. Find numbers u,v with w:v = 4:1 and u+v
= 1000.

u= V=

EX. Find numbers u,v with w:v =7:3 and u+v
= 500.

EX. Reframe EX 6.36 as a question that looks
just like EX 6.32 and 6.33. Just write the ques-
tion below.
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BC1 Breast cancer: Transitions between three cell states

Almost all of the cells in your body have almost the same DNA. What  Two almosts are need-
makes a cell from one tissue different from another is their cell state, ed. E.g., sperm and egg
which is largely determined by which genes are expressed. If DNAis  cells are haploid, having
the recipe book for proteins, not every recipe is followed in every cell. ~ ©nly one of each chro-
Cells can change their state, if they follow a different set of recipes. For ;22;‘:;:‘0 fBI::EgZI};?;e
example, hematopoietic stem cells (HSCs) are in one cell state, and as shuffled DNA which

they develop, they can turn into red blood cells, a different cell state! produce antibodies for

numerous foreign in-

Within a breast cancer tumor, cells often transition among cell states. vaders. Cells have their
One model considers three states: own random mutations
too.

Stem-like (S): Implicated in metastasis and drug-resistance.
Basal (B): Resembling structural cells of the milk duct.

Luminal (L): Resembling cells that line the milk duct. Metastasis is when the

cancer spreads outside

) . ) ) the tissue where it
Tumors that have different proportions of these kinds of cells have dif- g5, e.g., to lungs or

ferent risk profiles. Culturing these cells in the lab, scientists found that bone or liver or brain.
cells can transition from one state to another. From one tumor sample,
they found the following transition probabilities (per cell cycle).

These probabilities
. . come from Stochastic
E :0 é EZO é:o E ;L;,% State Transitions Give
090 /0 05 770 Rise to Phenotypic Equi-
StoB: 35% BtoS: 1% librium in Populations of
Cancer Cells, by Gupta,
EX. Fill in the following matrix, to create a 3x3 transition matrix M for Piyush B. et al., in Cell
this Markov chain. (2011).
From.. B L S
B
To... L
S

EX. Suppose that you begin with 1000 cells in each state (B, L, S).
According to the above transition matrix, how many cells do expect to
find in each state after one cell cycle. Multiply a vector by the matrix M
to find the answer.



BC2 Breast cancer: simulation and equilibrium

EX. Just looking at the transition matrix, what cell states to you expect

to find most often, and why?

Load the Three-Compartment Matrix Modeler. Enter your transition ma-
trix M from the previous page to begin simulating.

EX. Starting with 1000 cells of each state, how many cells do you find
in each state at equilibrium? How is this affected if you change the
starting numbers, but keep the total number of cells the same?

EX. In another tumor sample, the transition probabilities are given in
the margin. What kind of cells do you think are most common in such

tumors?

EX. Consider two treatment approaches. One destroys all stem-like
tumor cells for a short time. Another treatment disrupts the cell-state
transitions for a long time, changing the transition matrix so that B to
S transitions and L to S transitions have probability zero. Compare the

effects of these two treatments.
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B toL:
L to B:
LtoS:
StoL:
S to B:
BtoS:

8%
0%
1%
30%
9%
1%



Les1 Birth and death. Leslie matrix

So far, our matrix models have been Markov chains, in which popula-
tions migrate between a few states. The total population has remained
the same throughout. But this is not how life (organisms, cells, etc.)
work: there is also birth and death. Fortunately, matrix models are
flexible enough to accommodate this complication.

Here is a model of black bears, to illustrate the complexity. We consid-
er an age-stratified model, with juvenile (young) bears and adult (old)
bears. Let ] be the number of juveniles and A the number of adults.

Each year, 10% of the juveniles die. 25% of the juveniles become adults.

The remaining 65% are still juveniles the next year.

Each year, 50% of the adults are adult females, who each produce one
juvenile each year, and 10% of the adults die.

EX. Imagine a population of 20 juveniles and 100 adults. According to
the above assumptions, how many juveniles and adults will there be in
the following year?

juveniles and adults.

The previous question can be solved by multiplying M-X, where X is

the state vector X = (1200), and M is the Leslie matrix (0'65 0.5

0 0.25 09
EX. How are the numbers in the Leslie matrix related to the numbers
given in the model for birth, death, and aging? Describe how each
number (0.65, 0.5, 0.25, 0.9) comes from the given model.

It is sometimes helpful
to draw a diagram to
keep track of the num-
bers. See below.

65%
dead

/{0%

50% 25%

\

dead
90%



Les2 Eigenvectors. Proportional stability.

When M is a square matrix (like 2 by 2, or 3 by 3, etc.), we say that a
nonzero vector X is an eigenvector of M when M - X is proportional to
X. Here, proportional means that M - X = A - X, for some scalar A. The
word scalar is just a fancy word for "number" when we want to empha-
size that it is not a vector. When M - X = A - X, the scalar A is called the
eigenvalue.

For example, suppose X is an equilibrium vector for a transition ma-
trix M. Then M - X = X, so X is an eigenvector of M with eigenvalue 1.

EX. Let M be the Leslie matrix for the black bear system,

M= (0'65 0'5) . LetX = Q) be a state vector.
0.25 0.9

Turn the equation M - X = X into a pair of linear equations, to show that
the only equilibrium state is when ] =0 and A = 0.

EX. Now consider the state vector X = (188) . Multiply M - X to show

that X is an eigenvector of M. What is the eigenvalue?

100
100

and adults will you have after t years? Express your answer using

EX. If you begin with the state vector X = ( ), how many juveniles

exponential functions, and the eigenvalue you found.

J(t) =

A(t) =
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EX. Drill! Scale each
ofthe given vectors X by
the given scalar A.

2
A=3,X= ( )
5

A-X =
20
=05, X = .
A=05, (10
A-X =
20
A=1,X= .
' (20
A-X =



Les3 Black bears: Trajectories in state space

We keep our black bear matrix model from the previous page, with For this exercise, you
may wish to use the

0.65 0.5 Quick Matrix Calculator.

0.25 0.9
to adult, and the births and deaths.

Leslie matrix M = ( ) describing the transitions from juvenile

EX. Use the grid below to draw an arrow from a state X to a state M -
X, for at least 10 starting states X. (We have drawn a few such arrows
as examples.)

EX. Using a different color, but on the same plot, draw the trajectory
you expect to find, if you begin with a population of 20 juveniles and

60 adults.
o
o
i
z /
E
e
(&}
B
B
£ /
=
Z
o
0 Number of juveniles 100

EX. If you start with a population with some juvenile and some adult

black bears, and wait 30 years, what do you expect? Describe your an-
swer, in terms of how many black bears (more or less? twice as many?
10 times? 100 times?) and the relative numbers of juvelines and adults.



Les4 Expansion, contraction, and survival

0.65 0.5
0.25 0.9
states with equal numbers of juveniles and adults exhibit steady expo-
nential growth.

The Leslie matrix M = ( ) has one direction of expansion;

In fact, this Leslie matrix has one direction of contraction too.

EX. Show that the vector X = ('128) is an eigenvector of M. What is
its eigenvalue?

This eigenvector does not belong to our state space, because we cannot
have -20 juveniles. But geometrically, it is useful for showing that our

system contracts along one direction and expands in another. Load the
Two-dimensional Matrix Visualizer, and enter the Leslie matrix to explore.

EX. Consider what happens if the black bears have worse outcomes.
The birth rate for adults drops from 50% to 40%. The death rate for ju-
veniles increases to 40%, with 50% of juveniles remaining juvenile, and
10% maturing to adults. The adult death rate increases to 20%. What
is the resulting Leslie matrix?

EX. Use the Two-dimensional Matrix Visualizer. What are the two eigen-
values for the new Leslie matrix? How do these eigenvalues relate to
the long-term survival of the black bear population?
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Les5 Oscillatory approach from a Leslie Matrix.

We have seen oscillation from three sources: the simple harmonic os- This sequence of exam-
cillator, limit cycles, and time delay (in a negative feedback loop). Here ples comes from Model-
we will see that matrix models can also exhibit oscillation. ing Life, by Garfinkel et

al., Chapter 6.5.

0114
0.4 0.2

EX. Describe a situation of birth, death, and aging, which would be
modeled by the above matrix. Again the first row /column corresponds
to juveniles and the second to adults.

Consider the following Leslie matrix: M = (

EX. Start with 30 juveniles and 100 adults. Draw time series plots,
showing how the populations change over time.

EX. Use the Two-dimensional Matrix Visualizer and enter the Leslie ma-
trix above. Start with a "unit square" of sample states, which represents
various states in our juvenile/adult system. What happens in this
system in the short-term and long-term. One eigenvalue is negative,
and one eigenvalue is positive but less than one. How does this relate
to the behavior of the system?



Lesé Oscillation from Leslie Matrix

Here we adapt a matrix model of Bodine, also discussed in Modeling
Life, which exhibits sustained oscillations. It is a model of locusts,
which go through three life stages: Eggs (E), Hoppers (H), and Adults
(A). We track only the female population.

Each year, 2% of the eggs survive and become hoppers. The rest die.
Each year, 5% of the hoppers survive and become adults. The rest die.
Each year, every adult lays 1000 eggs before dying.

EX. What is the Leslie matrix? The first row /column should corre-
spond to eggs, the second to hoppers, and the third to adults.

M:

EX. Load the Three Compartment Matrix Modeler, and enter the Leslie
matrix above. Run the model to see what happens, and describe the
resulting oscillations.

EX. A critique of such models is that they do not describe oscillations

that we really see, because the oscillations are not robust. Try changing

the numbers 2%, 5%, and 1000 slightly. What happens to the oscilla-
tion? Describe two changes you tried, and how it affected the oscilla-
tions.
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See Chapter 9 of Math-
ematics for the Life Sci-
ences, by Erin Bodine et
al., Princeton University
Press (2014).



Epi1 Epidemiology: An S/I Model

The simplest models of human epidemiology sorts people into two
compartments, called susceptible (S) and infected (I). Imagine that
infection is caused by exposure to a pathogen, and that everyone who
is infected recovers eventually.

A starting point is given by the following Markov chain. Each day, a
susceptible person has a 1% chance of being infected. And each day, an
infected person has a 20% chance of recovering, rejoining the suscepti-
ble pool.

EX. Based on this model, how long does it take a typical infected per-
son to recover from illness?

EX. In an equilibrium state, what percentage of the population will be
in each compartment? If the population consists of 200 students in this
class, how many do you expect to be sick on any particular day?

EX. Sometimes, people exposed to a pathogen develop immunity, so
that they do not become sick the next time they are exposed. This is
the case for some types of dengue for example. To model this, consid-
er three compartments: susceptible (S), infected (I), and immune (M).
Modify the previous model to include transitions from the infected to
immune compartments, and also a small chance of death from infec-
tion. Describe your three-compartment model below.

Here infection is caused
when a susceptible
person is exposed to a
pathogen. A pathogen
is any disease-causing
micro-organism, e.g.,
bacteria, viruses, pro-
tozoa. We are not yet
considering a conta-
gious disease, in which
a susceptible person in-
teracts with an infected
person.



Epi2 Epidemiology: Complications and Variations

EX. What is the transition matrix for your susceptible (S), infected (I),
and immune (M) model?

EX. Use the Three Compartment Matrix Modeler to explore your S/I/M
model. Describe what happens, in the long term, if you start with a
population entirely of susceptible people.

EX. Suppose that infections are caused by interactions between suscep-
tible and infected persons. Instead of a matrix model, a "change equa-
tion" would be more appropriate, in the style of Lotka-Volterra and
others. Write such change equations below, for the three compartments
S, I, and M.

In your model, what is the coefficient of SI, and what does it mean?
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Syn1 Synthesis: Randomness and Order

EX. Lab 5 was all about randomness: stochastic processes. This lab is
titled "Order". What is random about the systems in this chapter, and
in what way did you find orderly results?

EX. The models in this chapter were simpler, in some ways, than the
change equations from Lab 1. Describe the fundamental difference
between a change equation (e.g. Lotka-Volterra, Insulin-Glucose,
Holling-Tanner) and a matrix model (e.g. Ion Channels, Osmosis,
Age-stratified growth).



Syn2 Synthesis: Exponential growth and decay

EX. A fundamental pair of models we have seen are exponential
growth and exponential decay. Write two paragraphs about these. The
first should provide multiple examples of where these models arise
naturally in physical and life sciences, within this lab manual or out-
side it. The second should provide your best explanation for why these
models show up so often in the sciences.
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Syn3 Synthesis: Modeling and your interests

EX. We have seen a wide variety of models, from contexts of chemis-
try and biochemistry, cell biology, physiology, ecology, and evolution.
Consider your scientific goals, future specialty, particular interests.
Choose one mathematical model related to your particular interests
from this lab manual. Describe the model here, and evaluate the model
using the criteria from Lab 1.



Syn4 Synthesis: Draw a picture.

EX. Draw us a picture to celebrate your completion of the lab manual.
Please be nice.
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Fin

The Sciences Sing a Lullabye
by Albert Goldbarth

Physics says: go to sleep. Of course

you're tired. Every atom in you

has been dancing the shimmy in silver shoes
nonstop from mitosis to now.

Quit tapping your feet. They'll dance

inside themselves without you. Go to sleep.

Geology says: it will be all right. Slow inch

by inch America is giving itself

to the ocean. Go to sleep. Let darkness

lap at your sides. Give darkness an inch.

You aren't alone. All of the continents used to be
one body. You aren't alone. Go to sleep.

Astronomy says: the sun will rise tomorrow,

Zoology says: on rainbow-fish and lithe gazelle,
Psychology says: but first it has to be night, so

Biology says: the body-clocks are stopped all over town
and

History says: here are the blankets, layer on layer, down
and down.
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Index

absolute change 11
age-stratified model 162
agonist 158
Allee effect 74
amplitude 100
ATP 104
autocatalysis 35
Avogadro's number 125
base

changing 55

of alogarithm 49

of an exponential function 50
bifurcation 127
binary fission 52
biphasic growth 76
birth rate 13
bistable 142
bit 48
Brownian motion 144
butterfly effect 128
byte 48
cancer 160
Carbon-14 decay 61
carrying capacity 71
cell state 160
change

absolute 11

relative 11
change equations 4, 9
chaos 127,128
closed trajectory 99, 112
compartment 149
competition 82, 88
concentration 80
constant of proportionality 16
continuous probability distribution 140
cooperation 88
cosine 101
current 156
damped harmonic oscillator 101
death rate 13
derivative 42
deterministic 125
diauxie 76
dimensional 153
directly proportional 16
directly related 16
discrete time 126
dissociation of water 81
doubling time 53
e 59

eigenvalue 163
eigenvector 163
elliptical 100
empirical relationship 17
equilibrium 28, 67
vector 163
equilibrium point
attractive 88
evolution 138
expectation 125, 132
exponential decay 64
exponential function 41, 50
derivative of 51
natural form 61
exponential growth
characterization 58
doubling time 57
first-order growth rate 35, 61
first-order reaction 80
fitness 138
FitzHugh-Nagumo model 113
fixation 139
fold change 14,15
force 97
frequency 102
gated 156
gene 90
genetic drift 138
giga 48
glucose 24,104
glycolysis 104
Higgins-Selkov model 107
growth rate 37
Hertz (Hz) 102
Hill function 26
histogram 130
Holling-Tanner model 108
Hopf bifurcation 123
Hutchinson model 117
independent
random variable 133
infected 168
insulin 24
resistance 29
sensitivity 24
interaction term 18
ion
hydrogen 81
ion channel 113, 156
kilo 48
kinetics
chemical 80
lac operon 76
lactose 77
lag period 35



Leslie matrix 162
lifespan 134
light 102

speed of 103
limit cycle 95, 110

linear
function 41, 45
derivative of 44
growth 37
modeling 62
linear algebra 152
logarithms 49, 54
natural 60
logistic growth 69
Lotka-Volterra equation 18
generalized 88
Markov chain 149
matrix 152
matrix model 158
mega 48
messenger RNA 90
metabolic rate 63
metabolism
first-order 78
metastasis 160
micro 48
milli 48
model 22
building 22
continuous-time 68
discrete-time 68
evaluating 22
logistic 69, 70,71
molar 80
mole 80
momentum 97
mRNA 90
muscle tremor 118
nano 48
natural selection 138
neural spike 113
nullcline 83
oscillation 95
parameter 4
Parkinson's disease 119
pathogen 168
percent 10
period 99,100
permeate 77
pH 81
pharmacokinetics 46, 47
phase portrait 70,73, 75, 96
phase shift 105
pico 48
Poincare-Bendixson theorem 112

power function 38, 41
derivative of 44
modeling 63

power rule 43

powers of 10 48

predator-prey 88

proportionality
constants of 16
direct 16
equations of 16

protein 90

proxy measurement 36

random variable 130
uniform 129

rate of change 5

relative change 11

robust 125,167

saturation 26, 29,77,108

self-interaction 68

semilog plot 14, 56, 57,131

semipermeable membrane 150

sigmoid 26

simple harmonic oscillator 95, 98

sine 101

sinusoidal 95

ST units 48

slope 37

speciation 137

squared-displacement 145

stable spiral 110

state
of the system 4
space 6
trajectory in space 6
variable 4

steady state 28

steep negative feedback 115

stochastic 125

sugar 77
glucose 24
lactose 77

susceptible 168

temperature 140

terms
in an equation 27
interaction 18

time 3

time delay 95, 114
in logistic model 117

time-series 7

trajectory 6

transcribe 90

transition 151
matrix 152

translate 90
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ultradian oscillation 121
unstable spiral 110
vector 152

vector field 19
wavelength 103
weighted average 132
Yule process 136



