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Preface

This is the lab manual for a course in mathematical modeling for the 
life sciences.  Our course is adapted from the successful LS30 course 
developed at UCLA.  We are fortunate that UCLA colleagues, especial-
ly Alan Garfinkel, shared their course materials and built a national 
community around teaching mathematics in a fundamentally new way.

If you are a mathematician, of the non-applied sort, here is a descrip-
tion of this course.  It is a course that deploys mathematics as a tool 
for understanding the natural world, primarily through systems of 
ODE (ordinary differential equations).  Moreover, the most important 
aspects of ODE for this purpose are not the usual foci of introductory 
ODE courses, and our students do not yet know what a derivative is.  
The most important aspects are (1) describing the natural world with 
variables and equations, (2) interpreting equations as statements about 
the natural world, (3) Exploring solutions to ODE through graphical 
and numerical means.  In this way, our approach to ODE embraces 
nonlinearity from the beginning, and adopts the visual/geometric 
approaches in the spirit of V.I. Arnold and the book of Strogatz rather 
than closed-form or series solutions.  In the second half of the course, 
we delve into delay equations, stochastic models, and linear matrix 
models, while maintaining our focus on the numerical and graphical 
methods.  

The "natural world" we explore is the world of life—from the molecu-
lar to the ecological scales.  So we require the student and instructor to 
care about chemistry, molecular biology, physiology, and ecology.  The 
instructor needs to bring a scientific curiosity about the natural world, 
but scientific expertise is not needed.

If you are a student, welcome to the class!  We ask that you bring an 
interest in the natural living world.  We do not assume that you bring a 
love of mathematics, but we hope this course develops your mathemat-
ical competence and confidence... joy may come later.  

This lab manual consists of six chapters, which we call "labs."  Each lab 
is really a block of activities, mixing computation, exploration, pen and 
paper, numeracy drills, etc., around a central theme.  Each lab is meant 
to take about 3 weeks of work, from beginning to end.  After those 3 
weeks, the entire lab can be assessed.  

The pages of this lab manual are meant to be written on, but please 
write your final drafts in the manual, putting your scratch work on 
separate paper.  By the end of the course, your lab manual will contain 
a quantitative foundation for life sciences which you can return to for 
years to come.
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See Strogatz, S., Non-
linear Dynamics and 
Chaos, for mathematical 
background.





Tools

We will be using computers frequently in this class.  You will want to have a dependable laptop 
computer during every lab session.  This computer does not need to be fancy, and you do not 
need to install any software.  But it does need the following:

1.  A screen that is at least 13" diagonal -- bigger than a tablet -- for reading, typing, etc.
2.  Battery life at least 2 hours, to work through the lab session even if an outlet is not nearby.
3.  A full English-language keyboard.
4.  Dependable access to the internet.
5.  The ability to log into websites with your UCSC credentials, access your Google account, etc.

In this section, we discuss tools that we will be using:  library access to online articles, Desmos 
(a free online graphing tool), and Google Sheets (a spreadsheet).

We will sometimes refer to published articles from scientific journals.  Fortunately, our uni-
versity subscribes to most journals, and as a student you have access to the vast majority of 
published scientific literature.  This is more powerful than Googling, with a bit of practice, and 
sometimes Google can take you straight to the article you want.

For example, you might look for an article whose title begins "Oil slick morphology derived 
from AVIRIS..."  You can go to library.ucsc.edu to start your search, and type this into the UC 
Library Search.  If you're working from campus, you should see the top search result.  

On the other hand, you might try going to scholar.google.com and searching for the same title, 
"Oil slick morphology derived from AVIRIS..."  You should again find the article as the top 
search result:

These two tools -- Google Scholar and the UCSC Library Search -- will get you a long way!
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Desmos

Desmos is a free online tool for creating graphs.  It is outstanding for exploring graphs of math-
ematical functions and relations.  You may have used a graphing calculator in school before -- 
Desmos is like a graphing calculator, but...

1.  It is freely available online.
2.  It is more powerful.
3.  It is more interactive.

Desmos is very good at graphing functions, systems of equations, zooming in and out to find 
solutions, etc.  It is not so good for graphing or analyzing experimental data -- for that we will 
use a spreadsheet and other tools.  In this way, Desmos is good for exploring idealized mathe-
matical models and visually understanding purely mathematical principles.  Connecting mathe-
matics to broader science is a goal of the course.

To find Desmos, go to www.desmos.com and click on Graphing Calculator.  You should see 
something like what is pictured below.

This is where you 
type equations/func-
tions to graph.

Many important 
tools, including 
changing your x and 
y labels, domains and 
ranges.

This is a way to Zoom 
in/out.  Or you can 
use your mouse/
trackpad inside the 
graphing area.

The main graphing 
area is here.  Pan, 
zoom, etc.
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Google Sheets

vii

Google Sheets is spreadsheet software that you should have access to 
through your Google account.  You may also use Microsoft Excel if you 
wish.  Both Google Sheets and Excel have similar structure and layout.

To access Google Sheets, open your web browser and go to sheets.goo-
gle.com, and click the icon that says Blank Spreadsheet.  You should 
notice a menu at the top of the page, with its own File, Edit, etc. drop-
downs.  It should look like what you see below.

Click on the "Untitled spreadsheet" to give it 
an appropriate name, and you can save the 
spreadsheet in your Google Drive.

A spreadsheet stores data in cells.  Each cell is 
labeled by a letter (its column) and a number 
(its row).  So on the right, you can see the data 
(the number 4) entered in cell B3.

Each cell typically contains either some us-
er-entered data (numbers, words, etc.) or a 
formula.  For example, if we want cell A3 to 
contain the square of cell B3, we could click on 
A3 and enter the formula exactly as below:

= (B3 * B3)

The equal sign is the signifier that you are en-
tering a formula, and not just some new bit of 
data.  When you enter that formula, and press 
return, the spreadsheet should appear with 16 
in cell A4.  Notice the formula hasn't totally 
disappeared; you can see it in the formula bar 
just above the cells.

We will use spreadsheets for entering and 
analyzing data occasionally throughout the 
class.  There are certainly fancier tools, but this 
is a foundational tool used by everyone who 
works with data.  





Old school supplies

ix

We will use the latest technology for teaching and learning, for being scientists.  At the same 
time, we will use some ancient technology which has been useful for decades, centuries, and 
sometimes millenia.

For this class, you will need the following items, which are easy to obtain.  

1.  Lots of blank paper, lined or unlined.  A spiral notebooks would be a good idea.  
2.  A comfortable writing instrument for everyday scribbles.
3.  A few fine-point pens of different colors for your final drafts of graphs.
4.  A small ruler for drawing straight lines.

Why do you need these old school supplies?  Here is how your labs will be completed:

1.  You will meet with other students and our teaching team to work on the labs.  Most of the 
work at this time should be on scratch paper.

2.  On your own time, you will check this work, and complete the notebook with neatly orga-
nized writing and carefully drawn graphs.

3.  When the lab is due, you will photograph and scan the section from your binder, and use 
Gradescope to submit a PDF file to the grader.  The Gradescope App is the most reliable tool 
for submitting your labs.



Figure 2 from Volterra, Fluctuations in the Abundance of a Species considered Mathematically.  (Full citation 
on opposite page).  The horizontal axis represents the number of prey (e.g. tuna), and the vertical axis the 
number of predators (e.g. sharks).  The "cycles" in this diagram represent possible trajectories over time, 
i.e., the "fluctuations in the abundance of species."



Laboratory 1
Flow

Writing in the journal Nature, in 1926, Vito Volterra brings mathematics 
to bear on the study of population biology.

A consideration of biological association, or of the mutual in-
teractions between two or more species associated together, has 
led to certain mathematical results which may be set forth as 
follows.

The first case I have considered is that of two associated species, 
of which one, finding sufficient food in its environment, would 
multiply indefinitely when left to itself, while the other would 
perish for lack of nourishment if left alone; but the second feeds 
upon the first, and so the two species can co-exist together.

Volterra's son in law, the zoologist Umberto D'Ancona, had studied the 
abundance of fish at the largest ports in Italy -- in Venice, Trieste, and 
Fiume -- in the preceding decades.  The near-complete halt of fishing 
during World War I had led to unexpected fluctuations in fish popula-
tions.  The correspondence between D'Ancona and Volterra, between 
family members, between a biologist and a mathematician, gave rise to 
the study of population ecology.

When Volterra brings mathematics into the picture, he is not just writ-
ing equations.  He is representing them visually, using what we now 
call trajectories in state space.  Equations will exhibit a precise relation-
ship between populations of species.  But these equations will be too 
hard to solve exactly.  Despite this setback, a combination of computa-
tion and visualization will allow us to understand these relationships.  
The visualization is largely unchanged from Volterra's century-old 
work.  Computation has gotten much easier!  

This first laboratory introduces the computational and qualitative 
methods that Volterra used to understand the interactions of predators 
and prey. In the end, these methods apply to broader systems at the 
molecular scale as well as the ecological scale.

Volterra, V., Fluctuations 
in the Abundance of a 
Species considered Mathe-
matically, in Nature, 118, 
pp.558-560 (1926).

See also The Biology of 
Numbers:  The Correspon-
dence of Vito Volterra on 
Mathematical Biology.  By 
Giorgio Israel and Ana 
Millan Gasca.  Springer 
2002.
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Imagine a region in the ocean, a giant cube of salt-water, where you 
are able to count all the fishes big and small.  You focus on two species, 
sharks and tuna, tracking their numbers over time.

You know a few things about sharks and tuna.

The tuna, feasting on smaller fish, thrive with plenty of food to eat.  
Their only worry is the hungry sharks.  The sharks eat the tuna.  With-
out the tuna, the sharks cannot survive... if there were no tuna, the 
sharks would gradually die out.  Without the sharks, the tuna would be 
quite happy.

EX.  If, at your first measurement, you found few sharks and many 
tuna, what do you expect to find at your next measurement?   
 

 
EX.  Sketch time-series plots:  one for the sharks and one for the tuna 
-- to describe your expectations over a longer period of time.  Once you 
settle on your answer, draw those two curves on the axes above.  Label 
your curves so that the reader knows which one represents sharks and 
which represents tuna.

EX.  What are some features of these graphs?  What do they mean, 
practically speaking?  Write two sentences about your findings.

time

many

few

This is a time-series 
plot.  A time-series plot 
is a graph in which the 
horizontal axis rep-
resents time, and the 
vertical axis represents 
some quantity (or quan-
tities) of interest. 

ST1  Sharks and tuna: conceptual model and time-series

sharks

tuna
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ST2  Sharks and tuna: variables and change
In mathematics, we use letters (called variables) to represent quantities.  
It is crucial to declare your variables — to say exactly what they mean 
— before chucking letters all over the place.  For sharks and tuna, we 
can do this in two sentences as follows.

	 Let S be the number of sharks in our region of ocean.

	 Let T be the number of tuna in our region of ocean.

In this course, we are interested in the natural world, where quantities 
change over time.  So time is a special sort of quantity (we call it "t"), 
separate from the others.  We have a special symbol to represent the 
amount of change: the Greek letter Δ ("Delta") means "the change in."  
To make sense of this, one fixes an interval of time, e.g., Δt = 1 year.  
With this time interval chosen, we have the following.

	 ΔS is the change in shark population during one year.

	 ΔT is the change in tuna population during one year.
 
If there are 100 sharks this year, and 120 sharks next year, then ΔS = 20.  
If there are 200 tuna this year, and 150 tuna next year, then ΔT = -50.

Living organisms like sharks and tuna reproduce.  When tuna repro-
duce, the existing population of tuna produce new tuna.  We might say 
that T (the current number of tuna) yields a positive change in itself, or 
the change in tuna ΔT is positively related to T itself.

EX.  How do you think ΔS is related to T?  How do you think that ΔT is 
related to S?  Positively or negatively?  Why?  Draw a diagram with the 
letters S and T and arrows expressing the positive and negative effects 
that sharks and tuna have on each other.

Please do NOT write

S = Sharks
T = Tuna

This bad habit can cause 
all sorts of confusion 
later.  Letters can stand 
for numbers.  Letters 
cannot stand for fish.

T

+
reproduction

We use feedback 
diagrams like above, 
to express that the 
tuna population has a 
positive effect on itself, 
through reproduction.



ST3  Sharks and tuna:  state space.

Let S be the number of sharks.  Let T be the number of tuna.  When we 
consider two populations like this, we have two state variables.  They 
are quantities that change over time, and one can plot them as a time 
series.  In a time series, time is plotted on the horizontal axis.  But this 
requires two plots — one for sharks and one for tuna.    

A powerful way to visualize the shark-tuna system uses state space.  
For this visualization, the state of the system is a pair (S,T) of numbers 
— the numbers of sharks and of tuna — and one plots this point in the 
xy-plane.  Below, we imagine there are 10,000 sharks and 70,000 tuna at 
time t=0, and plot the corresponding point (10, 70).

0 100

0
10

0

Number of sharks (1000s)

N
um

be
r o

f t
un

a 
(1

00
0s

)

state at t=0

EX.  With reference back to the first exercises, what do you think the 
state of the system will be one month later (at t=1)?  Justify your an-
swer and plot and label the corresponding point above.

EX.  Plot points for the state of the system at t=2, t=3, t=4, etc., based on 
your expectations.  Connect the dots to form a trajectory in state space.
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ST4  Sharks and tuna: trajectories and time-series
Below is a trajectory in state space, with observations of sharks and 
tuna every month for 6 months.

t=0, t=6

t=1

t=2

t=3

t=4

t=5

EX.  How many sharks and tuna are observed at t = 2 months?

EX.  Describe the change in the number of sharks and number of tuna, 
from t = 2 months to t = 3 months.  

	 ΔS = ______________  sharks. 

	 ΔT = ______________ tuna.

EX.  Using the trajectory above, graph the populations of sharks and 
tuna as two time-series plots on the same axes below.  Label your plots 
clearly to distinguish the sharks from the tuna.  Place dots on your plot 
for each monthly observation.

time (months)

100,000

0

0 100Number of sharks (1000s)

0
10

0
N

um
be

r o
f t

un
a 

(1
00

0s
)



BT1  Bathtub:  The change equation
Once we use symbols for quantities, and their rates of change, we can 
use equations to describe what happens.  We call these change equa-
tions.

The basic change equation has the form

ΔQ = [increases in Q] - [decreases in Q]

Here Q is a quantity we care about, and ΔQ is the amount it chang-
es.  How a quantity changes is related to stuff that yields an increase 
and stuff that yields a decrease.  When we focus on a quantity and its 
change, we call it a state variable.  The values of these quantities are 
called the state of the system.

Consider a bathtub, with W liters of water in it.  What influences the 
amount of water in the bathtub (the state of the system)?  Usually it is 
how much you open the tap, and how much you open the drain.  Put-
ting this into a change equation, we write

ΔW = iT - jD

Here we have three quantities.

	 Let W be the number of liters of water in the tub.
	 Let T be the openness of the tap (0=closed to 1=fully open).
	 Let D be the openness of the drain (0=closed to 1=fully open).
	
If our time intervals are minutes, Δt = 1 minute, and ΔW represents the 
change in the water level during a one minute time period.  

We also have two parameters, which we have called "i" and "j".  The 
parameter i is the maximum flow rate of the tap -- when T = 1, the flow 
rate is i liters per minute.  We call these two numbers "parameters" in-
stead of "state variables" because they are properties of the system that 
are not changing — at least not during a single bath (we hope!)

EX.  What do you think the parameter j represents?

EX.  Suppose that i = j, and you open the tap and drain as much as pos-
sible.  What happens to the water level? 

EX.  When you actually fill a bathtub, what quantities (W, T, D) do you 
directly affect, and what quantities change throughout the process?

Turning the handle 
opens the tap.

Turning the knob opens 
the drain.
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BT2  Bathtub:  Graphing change

time (minutes)

60 L

0 L

EX.  On the chart above, draw a graph which represents the amount 
of water in the bathtub throughout the process of taking a bath.  At 
the beginning and end, there should be 0 Liters of water in your bath.  
Don't forget to Label the horizontal axis with the number of minutes 
for each stage.  Label the stages "Fill" and "Bathe" and "Drain."

EX.  The quantity ΔW/Δt represents the rate of change of the quantity 
W.  Estimate ΔW/Δt during each stage of your bath, and the parame-
ters i and j.  Your estimates should be realistic, using appropriate units, 
given a 60 Liter capacity of your bathtub.  Use your personal experi-
ence waiting for a bath to fill/drain, or look up the flow-rate of typical 
faucets.

EX.  Suppose that your drain is a bit clogged, so it no longer can be 
fully opened.  Use a dotted line on the chart above to show how that 
would impact the time series.

EX.  The slope of a line is its rise (vertical change) divided by run (hori-
zontal change).  On your chart, the vertical units are liters and horizon-
tal units are minutes.  Therefore slope is measured in L/min (liters per 
minute).  Relate the slope to the rate of change ΔW/Δt, and relate these 
to the parameters i and j.

run

ris
e

w
at

er
 in

 tu
b



N1  Numeracy:  "Percent of"

100% of X means all of X.
50% of X means half of X.
33% of X means (approximately) a third of X.
25% of X means a quarter of X.
20% of X means a fifth of X.
10% of X means a tenth of X.

100% of 250 is 250.
50% of 40 is 20.
33% of 300 is approximately 100.
25% of 200 is 50.
20% of 500 is 100.
10% of 2020 is 202.

EX.  Compute the following percents without 
using a calculator.  (Mentally)

100% of 30 is ________

50% of 80 is _________

33% of 60 is _________

25% of 800 is ________

20% of 50 is _________

10% of 380 is ________

EX.  Represent the following portions as per-
cents without using a calculator.  (Mentally)

15 is  ________% of 30.

20 is  ________% of 60.

50 is  ________% of 200.

3 is  ________% of 30.

207 is  ________% of 2070.

99 is  ________% of 99.

To compute P% of X, you can also multiply (P/100) · X.  This is often easy, using decimals and a 
calculator.  For example,

37% of 93 equals 0.37 · 93 = 34.41 (by calculator).

40% of 177 equals 0.40 · 177 = 70.8 (by calculator).

EX.  Compute the following percents, using a 
calculator.

67% of 25 is ________

3% of 65 is _________

23% of 230 is _________

EX.  About 34% of UCSC undergraduates are 
"first-gen," meaning the first in their family 
to obtain a 4-year college degree.  If there are 
18000 UCSC undergraduates, how many first-
gen students are there?

EX.  Why is 4% of 25 equal to 25% of 4?  Ex-
plain.
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N2  Numeracy:  Percents and relative change

Percents are very useful for thinking about quantities in relation to each 
other.  For example, the number 1000 seems like a big number.  But 
1000 is only 0.1% of one million... so 1000 is "small" relative to 1000000.  

We used Delta (Δ) already as a notation for absolute change in a quan-
tity.  We use percents to describe relative change.  Relative change is 
often more natural than absolute change in biology.  

If a quantity Q changes from 50 to 60, we say ΔQ=10.  But the relative 
change is how much it changes as a percent of where it was.  Since 10 
is 20% of 50 (see the last page!), we say that the change from 50 to 60 is 
a 20% increase.

EX.  Complete the following sentences to express a change in relative 
terms, using percents.

Example.  X starts at 30 and ends at 45.  ΔX = 15.  X increases by 50%.

X starts at 80 and ends at 100.  ΔX = ______.  X increases by ______.

X starts at 120 and ends at 150.  ΔX = ______.  X increases by ______.

X starts at 10 and ends at 20.  ΔX = ______.  X increases by _____.

X starts at 1000 and ends at 1100.  ΔX = ______.  X increases by _____.

Example.  X starts at 30 and ends at 27.  ΔX = -3.  X decreases by 10%.

X starts at 100 and ends at 70.  ΔX = ______.  X decreases by _____.

X starts at 90 and ends at 60.  ΔX = ______.  X decreases by _____.

EX.  Suppose that X starts at 100.  Then X increases by 10%.  Then X 
decreases by 10%.  What happens?  Explain if you can!



Pop1  Populations:  Relative change
Imagine bacteria, chilling on a plate, watching Netflix.  The bacteria 
reproduce by dividing every hour.  If you have 1000 bacteria at 2pm, 
then you have 2000 bacteria at 3pm.  After those 2000 bacteria divide, 
and you have 4000 bacteria at 4pm.  Etc.

To describe this using a "change equation", we start as usual.

State variable:  Let B be the number of bacteria on the plate.

Time interval:  Δt = 1 hour.

Change equation:  ΔB/Δt = ???

We cannot write the change equation as ΔB/Δt = 1000.  This is true in 
the first hour, perhaps, as B changes from 1000 to 2000 and ΔB = 1000.  
But then, as B changes from 2000 to 4000, it appears that ΔB = 2000.

What happens here is that B changes proportionally to B.  The popula-
tion change is proportional to the population!  The form of this equa-
tion is what we will study in detail in the next chapter.

Change equation:  ΔB/Δt = B

What if only half the bacteria reproduce each hour?  At 2pm, we begin 
again with 1000 bacteria.  Half of these (500 bacteria) divide and half 
remain.  At 3pm, we expect 1500 bacteria.  In this situation, B increases 
by 50% each hour.

Change equation:  ΔB/Δt = 0.5 B.  Notice that 0.5 B is another way of 
saying "50% of B."

EX.  Use the same model, with 1000 bacteria at 2pm. As above, suppose 
that ΔB/Δt = 0.5 B.  How many bacteria would you expect at 4pm?  
Illustrate the process with a schematic (like the one in the margin) and 
show your computations.

1000 bacteria at 2pm

500    500

cell 
division

 500              1000

1500 bacteria at 3pm
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Pop2  Populations:  Birth rate and death rate
Let P be a population of organisms.  In other words, P is a quantity 
which is the answer to a "how many?" question.

Populations have two important parameters:  their per capita birth 
rate, which describes the relative increase in population, per unit time, 
due to births of new organisms.  The other parameter is the per capita 
death rate, which describes the relative decrease in population, per unit 
time, due to deaths of existing organisms.  The change equation looks 
like the following.

ΔP/Δt = βP - δP.

Here β ("beta") is the per capita birth rate.  Similarly, δ ("delta") is the 
per capita death rate.  We often use lowercase English or Greek letters 
for parameters.  Practice writing your Greek in the margin.

EX.  The annual (per year per capita) birth rate in Wisconsin is "10 
births per 1000 people every year," or β = 10/1000 = 0.01 per year.  If 
there are 6 million people in Wisconsin in 2024, how many people do 
you expect in Wisconsin in 2025?  In 2026?  Only account for births.

EX.  The annual death rate in Wisconsin is "8 deaths per 1000 people 
every year," which means δ = 8/1000 = 0.008 per year.  Revise your 
answers to the previous question to account for both births and deaths.

EX*  We can improve our model by age-stratification.  To keep things 
simple, let us think of a population C of non-reproducing children and 
A of reproducing adults.  How do you think ΔC is related to A?  How 
do you think ΔA is related to C?  Write a pair of change equations 
which reasonably describe this situation. 

α β 

Write the letters α, β.

Write the letters γ, δ.

γ δ
1.29.  Above are the 
Greek letters alpha, 
beta, gamma, and del-
ta.  Copy these letters 
below.



SL1  Semilog plots and Relative change
On the right is a plot 
of the world popula-
tion since 10,000bce.  
Looking at the plot, it 
seems like the world 
was an empty place 
until around 500bce.  
That is because the 
current population of 
billions swamps the 
past population in the 
millions.  This prob-
lem in visualization 
can be solved with a 
semilog plot.

A semilog plot uses a logarithmic scale on the vertical axis.  The effect 
is that an interval on the vertical axis represents a relative change.  If 
we use a Log10-scale, each interval on the vertical axis represents a 
10-fold change (multiplication by 10)!  Below is the world population, 
since 10000bce again, but this time on a semilog plot.

Today1ce2000bce4000bce6000bce8000bce

10 Million

100 Million

1 Billion

EX.  According to this graph, estimate how many years it took for the 
world population to grow from 10 million to 100 million (a 10-fold 
change).

EX.  If the population growth rate between 4000bce and 0 continued 
through to the present day, what would the current world population 
be?  Estimate this by sketching a line on top of the graph above.

Graph adapted from 
Wikipedia, World pop-
ulation growth (lin-log 
scale).png.  The data is 
the same as the plot 
above!

The evenly spaced "ma-
jor" horizontal tick lines 
are at 10 million,  100 
million, and 1 billion.  
The "minor" tick lines 
count from 1 million, 2 
million, 3 million, etc., 
up to 10 million, then 
20 million, 30 million, 
40 million, etc., up to 
100 million, then 200 
million, etc.
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SL2  Drawing a semilog plot

Year Electricity 
used in U.S. 

1920 1
1930 2.310
1940 3.597
1950 8.513
1960 19.344
1970 39.115
1980 58.340
1990 77.234
2000 96.665
2010 104.985

Data from Electrifica-
tion of the United States 
economy, 1920-2021, 
from Primary energy use 
in the United States, by 
O'Connor et al.  Re-
trieved from visualizin-
genergy.org.

On the right is a table showing the electricity used in the United States 
over the past century.  These numbers are in "relative" units, with 1920 
set to 1.  So in 1930, the electricity usage was 2.31 times the usage in 
1920.  We can visualize this growth nicely using a semilog plot.

EX.  Plot this data on the semilog axes below.  Note that we are using 
a Log2-scale on the vertical axis, so every vertical unit upwards corre-
sponds to multiplication by 2 (a 2-fold change).  Hint:  to accurately 
locate 3.597 note that Log2(3.597) = 1.847 is between Log2(2) = 1 and 
Log2(4) = 2.  Use these logarithms to locate the points, as shown below.
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1920  1930  1940  1950  1960  1970  1980  1990  2000  2010

EX.  The graph that you draw above should appear almost like a 
straight line between 1920 and 1970.  Use this line to complete the fol-
lowing sentence:  

During the 1920s through the 1970s, U.S. electricity usage dou-

bled every ________ years.

EX.  Use the table to compute ΔE during each decade.  For example, in 
the 1920s, ΔE = (2.310 - 1) = 1.310.  Use this, and decade-time intervals 
Δt = 10 years, to complete the following relative growth rates.

	 ΔE/Δt = ______ E, during the 1920s.

	 ΔE/Δt = ______ E, during the 1930s.

	 ΔE/Δt = ______ E, during the 1940s.

	 ΔE/Δt = ______ E, during the 1950s.
	
	 ΔE/Δt = ______ E, during the 1960s.
 
	 ΔE/Δt = ______ E, during the 1970s.

Log2(2)=1

Log2(1)=0

Log2(4)=2
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EX.  The semilog plot above displays the total weight (in kilograms) of sharks and tuna caught 
in the Adriatic sea and brought to port at Trieste, between 1902 and 1935.  How do you think 
this relates to the population of sharks and tuna in the Adriatic sea?  In what ways might this 
data be a good or bad proxy for population?

EX.  Look up the dates of World War I.  How might WWI have affected the actual populations in 
the ocean?  The fishery catches?  What specific effects do you see in the plot above?

ST5  Sharks and tuna: real data.
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ST6  Sharks and tuna:  counting interactions
Here we return to the example of sharks and tuna in a region of water.  
As before, let S be the number of sharks, and let T be the number of 
tuna.  Here we are interested an a quantity that both sharks and tuna 
care about:  let I be the number of "interactions" between sharks and 
tuna.  In other words, I is the number of times that a shark and tuna are 
close enough together for the shark to eat the tuna.

EX.  Run the Shark-Tuna Interaction Simulator.  Draw a plot below, show-
ing how the number of interactions (y-axis) depends on one state vari-
able with the other state variable fixed.  Guidelines are in the margin.

Counting interactions 
with _______________ fixed. 

Number of _____________

In
te

ra
ct

io
ns

0 _____

0
__

__
__

EX.  The empirical relationship between I, S, and T is I = k ST,
where k is some constant.  Pooling your experiment with your class-
mates and their plots, estimate the constant k.  Describe how you 
achieved this estimate.

1.  Choose one state 
variable (sharks or tuna) 
and keep that number 
fixed throughout.

2.  Try a range of pos-
sibilities for the other 
state variable, including 
at least 5 distinct values, 
and run the simulation 
at least 5 times for each 
value (25 data points 
minimum).

3.  Within the plot, draw 
dots for all of your 
observations.  Plot a line 
or curve which models 
the empirical relation-
ship between "I" and 
your state variable.

An empirical relation-
ship is a formulaic 
relationship between 
quantities which is sug-
gested by observation 
and experiment.  

But empirical relation-
ships are not always 
supported by a "mecha-
nism" to know why the 
relationship holds.



ST7  Sharks and tuna:  Lotka-Volterra equations.
Let S be the number of sharks.  Let T be the number of tuna. These are 
our state variables.  We are now at the point where we can model the 
shark-tuna system with change equations:

ΔS/Δt = -δS + pST

ΔT/Δt = βT - qST

The first equation says that the change in shark population (ΔS) aris-
es from two sources.  There is a net death term -δS, because without 
enough food (tuna), the sharks slowly die off.  But interactions between 
sharks and tuna (chomp!) provide food for the sharks, helping them 
survive and reproduce.  There is an interaction term pST, with posi-
tive coefficient p reflecting the fact that predations are beneficial to the 
sharks.

The second equation says that the change in tuna population (ΔT) 
arises from two sources.  There is a net birth term βT, because without 
the hungry sharks, the tuna would happily survive and reproduce.  But 
interactions between sharks and tuna (chomp!) kill off the tuna, leading 
to a negative interaction term -qST.  Interactions are bad for the prey.

EX.  Take the following parameters in the above equations.

δ = 0.04, p = 0.003, β = 0.06, q = 0.004.

Suppose our time interval is Δt = 1 month.  If at one moment there are 
20 sharks and 40 tuna, what do you expect for ΔS and ΔT?  How many 
sharks and tuna do expect at the next month?  Round your answers 
down to a whole number.  Record your answers in the margin (at t=1).  
Continue this process to record the numbers of sharks and tuna at t=1, 
t=2, t=3, in the table in the margin.

EX.   Plot a time series below for S and T displaying their populations 
at these four moments.  

Our parameters (a,b,c,d)
will always be assumed 
positive.  For example, 
since "c" is positive, the 
term "-cST" is a negative 
interaction term.

t S T ΔS ΔT
0 20 40
1
2
3

These are called the Lot-
ka-Volterra equations.  
The interaction terms 
reflect the feedback 
loop below.

TS

eats

is food for

-

+
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ST8  Sharks and tuna.  Simulation and interventions.
The previous exercises show that it is tedious to do this sort of shark 
and tuna accounting by hand.  But computers can do this work very 
quickly.  Load up the Shark and Tuna Trajectory Simulator.  

EX.  Take the starting values S = 20 and T = 40, as you did before.  Find 
the appropriate place on the shark-tuna trajectory plot and click to start 
the trajectory.  Sketch the trajectory below.  

EX.  The simulation shows a lot of arrows, called a vector field.  What 
do you think these arrows represent in this context?  

EX.  How do the time series in the simulation resemble or differ from 
what you found by hand?

EX.  The simulation allows you to instantly "kill" 10 tuna or 10 sharks.  
Try this out at different points in the trajectory.  Explain how it is pos-
sible to "kill" sharks, but end up in a situation where the shark popula-
tion grows even greater than before.

0

0

Number of sharks

N
um

be
r o

f t
un

a

Use the default parame-
ters with the simulator:

δ = 0.4, 
p = 0.03, 
β = 0.6, 
q = 0.04.

These are similar to 
what you did "by hand" 
but using a different 
time interval.



ST9  Sharks and tuna:  reflections on modeling

We have explored a mathematical model of sharks and tuna, the Lot-
ka-Volterra model of populations of predators and prey.  This model 
describes a system with two state variables S and T, whose change is 
determined by assumptions about birth and death and predation.

This whole endeavor, from identifying state variables and relevant 
parameters, to describing their change via equations, is called building 
a model.  Have we done a good job?  Every model has strengths and 
weaknesses; identifying these is called evaluating the model.  Possible 
strengths of models include:

Accurate descriptions:  does the model accurately describe previous 
observations, when appropriate parameters are chosen?

Accurate predictions:  does the model accurately predict future obser-
vations?

Parsimony:  does the model have more parameters than should be nec-
essary, or just a few necessary ones?  Does the model only "fit" the data 
because a zillion parameters are tweaked the right way?

Robustness:  do small changes in assumptions or parameters destroy 
the utility of the model?  Or does the model hold up, with minor ad-
justments?

Interpretability:  can one easily interpret each term of the model, to un-
derstand how different factors will change the outcomes?

Insightful:  does the model provide insight that would be difficult to 
find by simple observation alone?

Adaptable:  can the model be easily adapted to slightly different situa-
tions or by adding layers of complexity as needed?

Generalizable:  does the model apply to a broad range of circumstanc-
es, or just to the very specific situation it is designed for?

One cannot hope for a model with all of these strengths, especially not 
in a complex world of living organisms in their natural environment.  
But if we temper our expectations, we can hope to find models with 
some of these strengths.

In contrast, physicists sometimes find models with all of these 
strengths.  Newton's law of gravity, for example, or the standard model 
in particle physics, are examples.  These models can be "better" be-
cause they address zillions of non-living, controllable "things" made 
of near-identical parts.  Every electron, every hydrogen atom, every 
photon follows the same rules.  In that way, physicists have it easy.   
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EX.  Evaluate the shark-tuna model we have studied.  Identify its 
strengths and weaknesses, using the terms from the previous page, and 
pointing to specific evidence from your explorations.  Write 100-200 
words with your evaluation and evidence.

ST10  Sharks and tuna:  reflections on modeling



Lang1  Expression:  English to Variables and Equations.

Example in words:  a child is growing at the rate of 2 inches per year.

State variable:  Let H be the height of the child (in inches).

Time interval:  Δt = 1 year.

Change equation:  ΔH/Δt = 2 inches per year.

In each of the following, write the state variable(s) with units, time in-
terval, and change equation to describe the rate of change.  Use a "Let" 
sentence for each state variable, as in the example above.  Answers 
may vary!

EX.  Example in words:  After her parachute opens, a skydiver de-
scends at a speed of 5 meters per second.

State variable:  Let _____ be

Time interval: Δt = 

Change equation: Δ___ / Δ___ = 

EX.  Example in words:  Alan makes $2000 from his job each month, 
pays $1200 each month for rent and $400 each month for food.

State variable:

Time interval:

Change equation:

EX.  Example in words:  A barista pours hot water onto the coffee 
grounds at a rate of 10 mL (milliliters) per second.  The resulting coffee 
pours out of the bottom of the filter at a rate of 8 mL per second.  

State variable:

Time interval:

Change equation:  

Meters per second 
(m/s) is the SI unit for 
speed.  For comparison, 
10 m/s equals about 
22.4 mph (miles per 
hour), or exactly 36 kph 
(kilometers per hour).   

A teaspoon is about 5 
milliliters.  
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Lang2  Interpretation:  From Equations to Words

Example of a change equation:  ΔL/Δt = -3

Example in words (fictional story!):  A spring-loaded tape measure is 
pulled out all the way, then released.

State variable:  Let L be the length of the extended tape measure, in 
inches.

Time interval:  Δt = 1 second.

In each of the following, creatively write an example in words that 
fits with the change equation.  Your example must have a quantifiable 
state variable, with units, for which the change equation is reasonable.  
Use a "Let..." sentence to declare your state variables.

EX.  Change equation:  ΔM/Δt = 700 - 300

Example in words:  (both numbers 700 and 300 should occur).
  

State variable:  Let _____ be 

Time interval:  Δt = 

EX.  Change equation:  ΔR/Δt = 5

Example in words:  

State variable:

Time interval: 

EX.  (Challenge)  Change equation:  ΔA/Δt = 2B  and ΔB/Δt = 3. 

Example in words:  

State variable(s):  (A and B should be distinct but related quantities.)

Time interval:



IG1  Insulin and glucose:  introduction

Now we make a dramatic shift in biology, from sharks and tuna to 
insulin and glucose.  This is a shift from ecology to physiology.  But 
mathematically, it is not much of a shift — and that is the power of 
mathematics!

Insulin and glucose are two molecules that can be found in your blood-
stream.  Glucose is a sugar.  You get glucose by eating, and your liver 
produces some glucose too.  Glucose enters muscle and fat and other 
cells, where it is used or stored.

	 ΔG = [meals + liver production] - [cell usage and cell storage] 

Insulin is a hormone, a protein secreted by beta cells in the pancreas.  
Insulin slowly degrades, like a population dying off.

	 ΔI = [production by beta cells] - [degradation rate] I

These two equations govern how glucose and insulin would change 
over time, if they did not interact with each other.  But there are com-
plicated interactions!  

When insulin binds to receptors on muscle and fat cells, those cells 
send glucose transporters to their surface, and this causes the cells to 
transport glucose out of the blood stream.  The result is that insulin has 
a negative influence on glucose in the bloodstream.

	 ΔG/Δt = m - s I G

Here "m" stands for the rate of change of glucose due to eating, liver 
production, and metabolism.  

EX.  If you have no insulin, i.e., untreated diabetes, and you eat nor-
mally, what will happen to your glucose levels according to the above 
change equation?  Draw a graph and write a sentence to explain.

EX.  The parameter "s" is called insulin sensitivity.  How does a low or 
high value of s effect the regulation of glucose by insulin?  Practically 
speaking, what does this mean if you eat a sugary meal and have high 
or low insulin sensitivity (s)?

One common form 
of glucose.  There are 
some unlabeled carbon 
and hydrogen atoms, 
in this sort of diagram.  
The chemical formula of 
glucose is C6H12O6.

Insulin is a big mole-
cule.  Its formula is: 

C257H383N65O77S6
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IG2  Insulin and glucose:  minimal model
In studying the insulin-glucose system, we consider two state vari-
ables, called G and I.

Let G be the concentration of glucose in the blood (in mM)
Let I be the concentration of insulin in the blood (in pM)

The change equation for glucose is below.

	 ΔG/Δt = m - s I G

Insulin down-regulates glucose (as sharks "down-regulate" tuna).  At 
the same time, glucose up-regulates insulin.  When glucose levels are 
high in the bloodstream, the billion beta cells in your pancreas secrete 
more insulin in response.  This influence of glucose on insulin is mod-
eled by
	
	 ΔI/Δt = q b G2

1+G2  - γ I  

Here q is a parameter representing the efficiency of insulin production 
by the beta cells, and b is the total mass of the beta cells.  The parameter 
γ is the insulin degradation rate; insulin molecules naturally degrade 
in the bloodstream (just as sharks would slowly die off in the absence 
of tuna).  The mysterious term is the following function of G.  

	 H(G) = G2

1+G2

EX.  Graph this function using Desmos.  Sketch this graph below.  

The units here are mM 
= millimolar, or milli-
moles per liter, and pM 
= picomolar, or pico-
moles per liter.  

Glucose must be regu-
lated tightly for health, 
between about 3.9 and 
5.6 mM when fasting.  
Insulin is typically be-
tween 30 and 90 pM in 
the bloodstream when 
fasting.

A "mole of X means 
6.022 · 1023 molecules 
of X, almost a trillion 
trillion molecules.  So a 
millimole of glucose is 
about 6 · 1020 molecules.  
A picomole (trillionth of 
a mole!) is about 6 · 1011 
molecules. 

EX.  How does an increase in glucose concentration (G) affect the 
concentration of insulin, according to this function?  The function H(G) 
seems to approach a limit; what is this limit?  What does it represent 
about the effect of glucose on insulin?  

Glucose concentration

Typing this into Desmos 
will restrict the domain 
of G to avoid meaning-
less negative values.



IG3  Saturation:  sigmoid curves and the Hill function
Since it arises frequently in biology, we take a deeper look at this mys-
terious term that arises in the change equation.

	 ΔI/Δt = q b G2

1+G2  - γ I  

The term G2

1+G2  describes how glucose concentration influences insulin 
production.  Its graph exhibits two phenomena:

1.  A direct relationship.  As glucose concentration increases, insulin 
production increases.

2.  Saturation.  Insulin production is physiologically limited.  A beta 
cell can only produce so many insulin molecules per second.  Even if 
glucose concentration increases to an extreme amount, the insulin pro-
duction may only creep up slightly towards its theoretical limit.  

Direct relationships with saturation are often modeled by sigmoid 
curves, as shown below.  Note how it increases slowly, then quickly, 
then slowly again... approaching but never crossing its ceiling.

Minimum

Ceiling (limit)

Halfway to ceiling

EX.  Use Desmos to graph the function (the Hill* function)

	 H(G) = Gn

kn+Gn

Here G is still the variable graphed on the horizontal axis, and k and n 
are parameters.  How do the parameters k and n affect the shape of the 
sigmoid curve?  Answer this question in 2-3 sentences, focusing on the 
landmark point "P" on the above graph.

Add sliders for both pa-
rameters k and n.  Click 
to allow n to vary from 
1 to 5.  Allow k to vary 
from 0 to 1.

Use sliders to explore!

* Named for Achibald 
Hill, not because its 
graph looks like a hill.

Instructions:  Type the 
following into Desmos.

P
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IG4  Insulin and glucose:  minimal model
Now we can understand every term in the minimal model of the insu-
lin-glucose system.  This model contains two change equations.

	 ΔG/Δt = m - s I G
	
	 ΔI/Δt = q b G2

1+G2  - γ I  

EX.  There are four terms in these two change equations.  These terms 
are:  m, sIG,  q b G2

1+G2 , and γI.  These terms describe events that posi-
tively and negative influence the concentrations of glucose and insulin.  
For reference, write down the meanings of each term in the change 
equation.

Example:  m represents the change in blood glucose due to meals and 
liver production, minus what is metabolized.

sIG represents:

q b G2

1+G2  represents:

γ I represents:

EX.  Insulin yields a decrease in glucose concentration, and glucose 
yields an increase in insulin production.  In this way, there is a simi-
larity between the glucose-insulin system and the tuna-shark system.  
Write down two differences between the two systems, with specific 
reference to terms in the change equations.  

We use the word term 
loosely to mean some-
thing that is added/
subtracted to other 
things.



IG5  Insulin-Glucose:  simulation

Now load the Insulin Glucose Regulation simulator.  This simulator uses 
the minimal model to understand the effect of various parameters on 
blood glucose and insulin concentrations.  Notice that the horizontal 
axis is time (a 20-hour window is shown).  There are two vertical axes; 
the left one is for the red Glucose line (in mM), and the right one for 
the blue Insulin line (in pM).  When you load the simulator, it should 
display a steady state, the system is in equilibrium, as evidenced by 
the flat graphs.

EX.  What is the equilibrium concentration of glucose?  Of insulin?  
Make sure to include the appropriate units.

EX.  Increase the glucose production (m) parameter, as if you were 
regularly consuming more glucose, and click the "simulate" button to 
see the effect.  Does the system reach an equilibrium?  How are the new 
glucose and insulin concentrations related to the concentrations you 
found before?

EX.  If you regularly consume a lot of glucose, your body will slowly 
increase the mass of your beta cells.  Experiment with the parameters 
m and b (beta cell mass).  How can your body keep its glucose concen-
tration within the safe range (about 3.9-5.5 mM) by increasing beta cell 
mass?  What happens to insulin concentration?

EX.  People's insulin sensitivity (s) varies widely.  How can differences 
in beta cell mass keep glucose concentration in the safe range, even 
with wide variation in s?   

The simulator also in-
cludes an extra term 
for hepatic glucose 
production.  When 
the parameter α is 
zero, this term is zero 
and can be ignored.  
We will ignore α, k, 
and c until Lab 4.
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IG6  Insulin-Glucose:  simulation

During pre-diabetes, insulin sensitivity (s) tends to be lower, and beta 
cell mass (b) grows larger to keep glucose levels in the safe range.  But 
eventually, beta cell mass saturates -- the body cannot produce any 
more beta cells or make them any larger.  

EX.  Using the simulator, what will you find in glucose and insulin 
levels during pre-diabetes?  And what will you find when the param-
eter (b) cannot grow larger but (s) continues to shrink.  (This is called 
insulin resistance).

EX.  When glucose concentrations rise above 10mM, beta cells are 
killed by the high glucose levels.  Using the simulator, what would be 
the effect of this on glucose and insulin concentrations?  This is called 
type-2 diabetes.  

In type-1 diabetes, the 
immune system attacks 
the beta cells, leading to 
a similar result.



IG7  Insulin-Glucose:  trajectories in state space
The minimal model of the insulin-glucose system is given below.

	 ΔG/Δt = m - s I G
	
	 ΔI/Δt = q b G2

1+G2  - γ I  

Since we are working with two state variables, G and I, which change 
over time, we can consider trajectories in state space -- just like sharks 
and tuna.  To make things simpler, we set all of the parameters to 1, 
and consider the resulting system of change equations.

	 ΔG/Δt = 1 - I G
	
	 ΔI/Δt = G2

1+G2  - I  

Suppose that our time interval is Δt = 1 hour.

EX.  Suppose that at t = 0, the glucose level is G=2 and insulin level 
is I=1.  What will be the glucose and insulin levels at t=1?  At t=2?  At 
t=3?  Draw a picture displaying the trajectory in state space, with glu-
cose G on the horizontal axis, and insulin I on the vertical axis.  Tabu-
late the values of t, G, and I in a table in the margin.

t G I ΔG ΔI
0 2 1
1
2
3
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IG8  Insulin-Glucose:  trajectories in state space

Load the Dynamical Systems Calculator.  This is a general-purpose tool 
for visualizing trajectories in state space, given by change equations 
like we have seen for sharks and tuna, or insulin and glucose.  Our 
two state variables are glucose (on the horizontal axis) and insulin (on 
the vertical axis).  So for the simulator, we let X represent the glucose 
concentration and Y the insulin concentration.  To enter our change 
equations, use the following:

	 X' equation:  1 - Y*X	 Y' equation: (X*X/(1+X*X))-Y

Set Xmin = 0 and Xmax = 2.  Set Ymin = 0 and Ymax = 2.    

Turn on the vector field arrows, and start the simulation!

EX.  Resetting the simulation as needed, what happens to the red dot 
that starts at x=2 and y=1?  Compare this to what you found in the 
previous exercise.

EX.  Recall that the horizontal x-axis represents glucose concentration 
and vertical y-axis represents insulin concentration in this simulation.  
Looking at many trajectories, describe what happens.  How does that 
compare to what you found in the glucose-insulin simulator?  How 
does that compare to sharks and tuna?  



F1  Flow conclusion:  model reflection
EX.  Evaluate the insulin-glucose model in comparison to the shark-tuna 
model.  In what ways do you find one model more useful than another?  
Why might that be expected or surprising?  Write your answer in 100-200 
words.
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F2  Flow conclusion:  dissecting change equations

You have studied two systems of change equations.  One models shark 
and tuna populations (S and T), and the other models glucose and 
insulin concentrations (G and I).  One is at a large ecological scale.  The 
other is at a small physiological scale.  

EX.  Look at the letter soup of these change equations.  What are the 
state variables?  What are the parameters?  

EX.  Glucose increases according to a simple constant m.  Tuna increase 
according to a more complicated term βT.  Explain why these increase 
terms are different.

EX.  What is the meaning of the terms in the shark-tuna model labeled 
pST and -qST?

EX.  Why does the insulin increase term have the weird expression  
G2

1+G2  in it?  Why might that be a reasonable term to have?   

ΔS/Δt = -δS + pST

ΔT/Δt = βT - qST

	 ΔG/Δt = m - s I G
	
	 ΔI/Δt = q b G2

1+G2  - γ I  



A 1941 Fisher Electrophotometer, used to measure optical density.  Image from a sale by Olde Good Store, 
retrieved in July, 2023 from https://ogtstore.com/reclaimed-antique-electronics/fish-
er-electrophotometer/



Laboratory 2
growth

In a 1999 commentary, Frederick Neidhardt reminisces about his expe-
rience with population growth in the laboratory, in the 1950s.

For me, encountering the bacterial growth curve was a transform-
ing experience. As my partner and I took samples of the culture 
at intervals to measure optical density and plotted the results on 
semilogarithmic paper, we saw, after the lag period, a straight 
line developing... beautiful in precision and remarkable in speed. 
As the line extended itself straight-edge true, I imagined what 
was happening in the flask—living protoplasm being made from 
glucose and salts as the initial cells (Klebsiella aerogenes, they 
were called then) grew and divided. The liquid in the flask pro-
gressed from having a barely discernible haze to a milky white-
ness thick with the stuff of life, all within a very brief Boston 
winter afternoon.  Mutably specific autocatalysis, the physicist 
Erwin Schrödinger had declared a few years earlier, was the 
defining characteristic of living systems, and I had just witnessed 
the working out of the mathematical statement of that proper-
ty, dN/dt = kN (where N is the number of cells or any extensive 
property thereof, t is time, and k is the first-order rate constant [in 
reciprocal time units]).

In this laboratory, we will look at a few types of growth curves, in-
cluding the exponential growth which is characterized by that math-
ematical statement dN/dt = kN that so impressed Neidhardt.  We will 
"unpack" this mathematical statement—a differential equation! — to 
understand every letter and every symbol.  We will encounter some 
real data, resembling what Neidhardt saw, but collected through some 
more modern methods.

As suggested by Neidhardt, the letter N will be used to describe a 
population.  N is how many cells are present in the petri dish, or maybe 
how many wolves are within a square mile.  The letter t will be used to 
measure time, often starting from a certain moment called "time zero".  
The letter k is a parameter.  And dN/dt is the "derivative" which will 
occupy our attention for weeks to come.  

Frederick C. Neidhardt, 
"Bacterial Growth:  Con-
stant Obsession with 
dN/dt" in the Journal of 
Bacteriology, Dec. 1999, 
Vol. 181 (24) p. 7405-
7408.
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We have boldfaced 
some words from Nei-
dhardt's commentary.  
What do they mean in 
this context?  



The Figure above displays something very unusual—the linear growth 
of a strain of bacteria... in this case deprived of streptomycin which it 
requires to grow normally.

Let t denote time, in minutes.  Let N denote bacterial density.  This is 
probably "optical density" which is an observable proxy measurement 
for the population of bacteria.  

EX.  What do you think the circular marks represent?  What do think 
the line represents?

	 The circular marks represent

	 The line represents

EX.  How long is the time period represented in this graph?

	 ____________ minutes.

EX.  What was the bacterial density at the first observation (at t=0)?

	 N(0) = ______________

EX.  Let N(t) be a linear function whose graph is the line displayed in 
the figure.  Estimate its slope and intercept, and write its equation.  

	 N(t) = _______________________________

Figure 6 from Monod,  
"The growth of bacterial 
cultures" in Annu. Rev. 
Microbiol., 1949 (3), pp. 
371--394.

LG1  Linear growth of a population

A proxy measurement 
is a quantity we can ob-
serve, which is strongly 
correlated to a quantity 
we care about.  We 
care about how many 
bacteria there are.  We 
can't easily count them, 
so we measure how 
opaque the dish of bac-
teria looks.  The more 
bacteria, the less light 
that gets through.
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LG2  Linear growth rate

The Figure above displays something much more typical—the growth 
of a population (Drosophila, or fruitflies) which is first slow, then fast, 
then slow, under controlled laboratory conditions.  Here time t is 
measured in days, and population N is based on a direct count of flies.  
The growth rate in a population is given by the formula ΔN/Δt, and is 
measured in units of "flies per day" in this setting.  

EX.  Using the Figure above, estimate the growth rate of the Drosophila 
population, during the following time intervals.

	 During days 6-12, ΔN/Δt = __________ flies per day.

	 During days 12-18, ΔN/Δt = _________ flies per day.

	 During days 18-24, ΔN/Δt = _________ flies per day.

	 During days 24-30, ΔN/Δt = _________ flies per day.

	 During days 12-30, ΔN/Δt = _________ flies per day.

 
In each of the above estimates, you computed a "rise/run."  Thus each 
ΔN/Δt is the slope of a line segment.  In this way, you should observe:   

The slope of the population time-series graph 
equals

the rate of population growth.

EX.  Draw a right triangle on the Figure above, correponding to one of 
the time intervals listed above.  Mark the quantities ΔN and Δt on this 
triangle, and note that ΔN/Δt is the slope of the hypotenuse.

Chapter VII, Figure 5 
of Lotka's Elements of 
Physical Biology (1925), 
displaying data collect-
ed by Pearl and Parker.



36

LG3  Linear functions
There are two conceptually distinct ways to think about linear func-
tions.  Let X be a quantity that changes over time (t).  We say that X is a 
linear function of t in the following circumstances.  Memorize these!

1.  The relationship between X and t is given by a formula X = mt + b, 
for some parameters m and b.  

2.  The rate of change ΔX/Δt is constant, no matter what time interval 
we look at.

3.  The time-series plot of X is a straight line.

We can understand linear functions by going back and forth between 
these characterizations.  For example, if your hair length H changes at a 
constant rate ΔH/Δt = 0.4 mm/day, then your hair length is given by a 
formula H = 0.4 t + b, where t is measured in days (since some starting 
day), and b is the length of your hair on day 0.  The time-series plot of 
H will be a straight line with slope 0.4.  

EX.  The population of jellyfish is given by the formula J = 1.2 t + 800, 
where t is measured in months.  Describe ΔJ/Δt and draw a time series 
of J.  Label your axes carefully.

EX.  Your container contains 60 pieces of gum when you purchase it, 
and you chew 2 pieces per day. Let G be the number of pieces of gum 
in your container.  Describe G as a linear function of time by a formula, 
describe its rate of change ΔG/Δt, and draw a time-series plot of G.

Examples:

1.  X = 3t + 2

2.  ΔX/Δt = 3

3.  The time series looks 
like the line below.

time (t)

X
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LG4  Fitting a linear function
In practice, scientists often gather data through experiment, graph 
their data, and observe a pattern of linear growth or decay.  To estimate 
slope and intercept, scientists frequently use computers to fit a linear 
model.  The following exercises will show you how this is done.

Fission yeast (Schizosaccharomyces pombe) grow longer over short pe-
riods of time, so that their growth can be observed under a microscope.  
In the margin, you can find a table with the measured length of a single 
yeast cell tracked over a period of 160 minutes.  

EX.  Let L be the length of the observed yeast cell, and let t be time in 
minutes.  Sketch a time-series plot of L below, taking care to label axes.

EX.  Enter the data from the table into the Linear Regression with Log 
Scaling tool.   Use the slope and intercept there to describe the relation-
ship between L and t.

	 L = __________ t + _________.  

EX.  What is the growth rate of the yeast cell, using the slope of the re-
gression line above?  Compare this to the growth rate that you find by 
computing ΔL/Δt on the entire 160-minute time period.

EX.  Is the rate of change ΔL/Δt constant, no matter what time interval 
we look at?  Should we say that L is a linear function of t or not?  If not, 
what do you think we should say?

Image of fission yeast 
culture from The Cell 
Cycle. Principles of 
Control by David O. 
Morgan.

Below:  Table 1, from 
The time-profile of cell 
growth in fission yeast, by 
Buchwald and Sveiczer, 
in Theoretical Biology 
and Medical Modelling 
(2006). 

Time Length
(min) (μm)
0 8.667
10 9
20 9.333
30 10
40 10.333
50 10.667
60 11.333
70 12
80 12.333
90 13
100 13.333
110 14.333
120 15
130 15.667
140 16
150 15.667
160 16



F1  Graphs of linear, power, and exponential functions

y = 2x y = 2x - 1 y = 0.5x + 1 y = -0.5(x + 1)

y = x2 y = x3 y = x4 y = 1 - x4

y = x1/2 y = (x-1)1/2 y = x3/2 y = 0.5 x4.1 + 2

y = 2x y = (0.5)x y = 3x+1 y = 3(x+1)

EX.  Sketch a graph of the 16 functions below.  You may use a tool like Desmos to help, but try to 
guess and use prior knowledge as much as possible.



F2  Graphs:  Parameter Exploration 

EX.  Draw graphs of lines (linear functions) 
with various slopes, on the same axis.  In other 
words, draw the graphs of y = mx, where the 
parameter m (slope) includes -2, -1, -1/2, 0, 1/2, 
1, 2.

Where do all these graphs intersect?

EX.  Draw graphs of positive power functions, 
with various powers, on the same axis.  In 
other words, draw the graphs of y = xp, where 
the parameter p (power) includes 0.2, 0.5, 1, 
1.5, 2, 2.5, 3.  

Only include positive values of x, since gener-
al powers of x are undefined for negative val-
ues of x.  Where do all these graphs intersect?

EX.  Draw graphs of exponential functions 
with various positive bases, on the same axis.  
In other words, draw the graphs of y = bx, 
where the parameter b (base) includes 0.2, 0.5, 
1, 1.5, 2, 2.5, 3.

Note that all values of x are possible here, 
but the y-coordinate will always be positive.  
Where do these graphs all intersect?
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N3  Numeracy:  Powers of 2, powers of 10.

230=___________

220=____________

210=____________

28=____________

24=____________

23=____________

22=____________

21=2

20=____________

2-1=____________

2-2=____________

2-10=___________

2-20=___________

2-30=___________

Powers of 2 show up when we consider dou-
bling populations.  They are also important in 
"information theory," where the basic unit of 
information is the bit.  A bit of memory can 
store the answer to one yes/no question.  A bit 
requires one electronic "on/off" switch in your 
computer.  A byte is 8 bits (eight switches).

A kilobyte (KB) is 210 
bytes,  ~1000 bytes.

A megabyte (MB), is 220 
bytes, ~1 million bytes.

A gigabyte (GB), is 230 
bytes, ~1 billion bytes. 109=___________

106=___________

103=___________

102=___________

101=10

100=___________

10-3=__________

10-6=__________

10-9=__________

10-12=__________

A gigaton (GT) is 1 bil-
lion tons.  1 ton equals 
2000 lbs.
A megawatt (MW) is 1 
million watts.

A kilometer (km) is 
1000 meters, (walk from 
McHenry to Porter.)

Standard (S.I.) units 
include...

Length:  1 meter (a bit 
over 3 feet long)

Time:  1 second

Mass:  1 gram. (The 
weight of a dollar bill.)

A milligram (mg) is 
1/1000 of a gram.
A microsecond (μs) 
is one millionth of a 

A nanometer (nm) is 
one billionth of a meter.

Powers of 10 are fundamental to our base-ten 
number system (as we have 10 fingers).  Mem-
orize your powers of 10, including thousands, 
millions, and billions, and the corresponding 
fractions (1/1000, etc.), and the prefixes:  giga, 
mega, kilo, milli, micro, and nano.

Instructions:  This page can be a reference, as you learn your powers of 
two and powers of ten.  You don't need to memorize all your powers of 
2, but it is useful to have some particular "landmarks" in mind as you 
reason about numbers, doublings, etc.  

EX.  Fill out the following columns with powers of two and powers of 
ten.  Work by hand, when possible, and calculator when needed.

A picogram (pm) is one 
trillionth of a gram.



Log1  Common logarithms (base 10).
Logarithms were invented by the Scottish mathematician John Napier 
in 1614, and his son published his "Wonderful Canon of Logarithms" 
in 1620, along with Henry Briggs' "common" or "base 10" logarithms.  
Logarithms seem to delight scientists as much as they torment stu-
dents.  As you become a scientist, perhaps you will accept, and even 
delight, in logarithms.  We will see them often in this class, and there 
are many ways to get started.

We begin by thinking of logarithms as a way to inquire about expo-
nents.  Every question about logarithms has an equivalent question 
about exponents... and those you may be able to answer!

Logarithms base 10 relate  to questions about exponents with base 10.  
For example, consider the following equivalent questions.

What is log10(100)? __________		
	

What is log10(1/1000)? __________

What is log10(50)? _________

10 to what power equals 100?

10 to what power equals 1/1000?

10 to what power equals 50?	

EX.  Answer the questions on the right, using the previous page for ref-
erence.  The only difficult one is the last (10 to what power equals 50?).  
For that, try to approximate using your table, or a graphing tool.

Even if you have never seen logarithms, you can now fill in the blanks 
on the left!  The answers to the questions on the right are exactly the 
answers to the questions on the left -- that's what logarithms are!

EX.  Continue by filling in the missing question on right, answer the 
question on the right, and use this to answer the question on the left.

What is log10(10)? __________			

What is log10(1)? __________

What is log10(0.01)? _________

What is log10(103.4)? _________

What is log10(100x)? _________

10 to ________________________? __________	
		

10 to ________________________? __________

10 to ________________________? __________

10 to ________________________? __________

10 to ________________________? __________
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D1  The derivative:  from ΔP/Δt to dP/dt.

When a quantity P is changing, we describe its rate of change by focus-
ing on an interval of time:  a starting time and an ending time.  The rate 
of change during that time interval is the quotient ΔP/Δt.  Here ΔP is 
the amount that P changes, and Δt is the amount that t changes, during 
that time interval.  

EX.  Let P(t) = 100 t1/2.  Fill out the table below with values of P(t).  
Then compute ΔP/Δt on the time intervals below.   

EX.  What do notice about the rates of change ΔP/Δt on the intervals 
you considered above?  Look at the three values you've found!  

EX.  Now graph the function P(t) = 100 t1/2 in Desmos.  Use the Graph 
Settings button (it looks like a wrench), to change the view window 
so that the horizontal axis displays a range between 0 and 2, and the 
vertical axis displays a range between 0 and 150.  Add a marked point 
at (1,100).  Then add the graph of the line through the marked point, 
having slope m:  L(t) = m(t-1) + 100.  Use Desmos to add a slider for the 
parameter (slope) m, and click this slider to allow m to slide between 0 
and 100.  The result should look like what you see here in the margin.

Using the slider, what slope "m" makes the line L(t) tangent to the 
graph of P(t) at the marked point?

EX.  Relate your answers in the previous two questions.  Why are they 
related?  How does this number capture the slope of the curve P(t)?  
  

Time (t) P = 100 t1/2

1 100
1.001
1.01
1.1

On the time interval [1,1.1], 

	 Δt = ________ and the rate of change is ΔP/Δt = ________

On the time interval [1,1.01], 

	 Δt = ________ and  the rate of change is ΔP/Δt = ________

On the time interval [1,1.001], 

	 Δt = ________ and the rate of change is ΔP/Δt = ________



D2  Estimating the derivative.

The derivative dP/dt refers to the instantaneous rate of change.  For 
an instantaneous rate of change, we use a time interval with starting 
time t and ending time t + dt; the symbol dt stands for a "time differen-
tial," an infinitesimally small unit of time (just an instant!).

To estimate the derivative dP/dt at time t, we can compute ΔP/Δt on 
the time interval [t, t + Δt], when Δt is very very small.

Example:  Suppose P(t) = 2t2.  Estimate dP/dt when t=3.

Solution:  We choose the very very small Δt = 0.0001.  Then we have

P(3) = 2 · 32 = 18.
P(3 + Δt) = P(3.0001) = 2 · (3.0001)2 ≈ 18.0012.
On the time interval [3, 3.0001], ΔP/Δt = 0.0012/0.0001 = 12.	

Hence dP/dt ≈ 12 when t=3.

In the following exercises, use this technique to estimate the derivative 
dP/dt at various times.  Write your work just as it is written in the ex-
ample above.  Use a different Δt (your choice!) in each problem.

EX.  Suppose P(t) = 100 t1/2.  Estimate dP/dt when t=4.

EX.  Suppose P(t) = 2t + 1.  Estimate dP/dt when t=7.

EX.  Suppose P(t) = 70 t2.5.  Estimate dP/dt when t=9.

A confusing thing is 
this:  the rate of change 
ΔP/Δt really depends 
on the choice of a start 
time and end time.  

The derivative dP/dt 
depends on the choice 
of a start time; the end-
time is just a tiny instant 
after the start time.  
Making this precise re-
quires the mathematics 
of limits.
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RT1  Redwood tree growth:  power function
A redwood tree grows from a sapling into a giant over hundreds, and 
sometimes thousands, of years.  

EX.  On the right is a typical cross section of a redwood tree.  Note that 
each tree ring indicates one year of time elapsed.  Use this image to 
estimate the rate of growth of the radius of the tree.

	 ΔR/Δt = ______________ meters per year.  (Convert cm to m!)

EX.  Now, use your estimate and a linear function to model the radius 
of the redwood tree as a function of time.  

	 R(t) = ___________________ meters.  

EX.  The height of the redwood tree does not grow linearly over time.  
Rather, the height of a redwood tree is modeled by the power  function.

	 H(t) = 3 t0.5 meters.  

EX.  Sketch a time series of the height of the redwood tree below.

EX.  Assuming the tree is a cylinder, what is the volume V of the tree as 
a function of time?  Use the approximation π≈3.14.

	 V(t) = ___________________ m3.  (Note m3 = cubic meters)

EX.  The density of a redwood tree is approximately 450 kg/m3.  What 
is the mass M of the tree as a function of time?

	 M(t) = ___________________ kg.

EX.  Which has more mass:  a single 100-year old tree or two 80-year-
old trees?  Explain by computing their masses.

10 20 30 40 500
(centimeters)

A density of 450 kg/
m3 means that each 
cubic meter of redwood 
weighs 450 kilograms.
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RT2  Redwood tree growth:  rates of change
Now we look at the growth rate of the redwood tree.  We have already 
modeled the linear growth of the radius of the tree.  

EX. Estimate the growth rates dH/dt when t=1, when t=10, and when 
t=100, using the function H(t) = 3 t0.5 from the previous page.

At 1 year old, the tree height is growing at a rate of _________ m/yr.
	
At 10 years old, the tree height is growing at a rate of _________ m/yr.
	
At 100 years old, the tree height is growing at a rate of ________ m/yr.

To understand how the tree interacts with its environment, it is import-
ant to understand how the mass of the tree changes from year to year—
this is its biomass growth rate.

EX.  Estimate how fast the mass of the tree is increasing, dM/dt, when 
t=1, t=10, and when t=100, using the function M(t) you found on the 
previous page.

At 1 year old, the tree mass is growing at a rate of _________ kg/yr.
	
At 10 years old, the tree mass is growing at a rate of _________ kg/yr.
	
At 100 years old, the tree mass is growing at a rate of ________ kg/yr.

EX.  Which is growing faster, in terms of mass per year:  a single 
100-year-old tree or two 80-year-old trees?   Explain by computing their 
growth rates in kg/year.

EX.  Note that biomass growth requires corresponding inputs of sun-
light, water, and soil nutrients.  What advantages are there for a forest 
of many younger trees versus a forest of fewer older trees?  
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D3  The derivative of a power function
The first big discovery of calculus appeared in 1684:

In a traditional calculus book, this is presented as the Power Rule.

Power Rule:  If P(t) = tn, then dP/dt = n tn-1.

EX.  Let P(t) = t3.  Estimate dP/dt when t=2, using the method of the 
previous pages.  Compare this to the exact result you get by using the 
Power Rule above.

EX.  Let P(t) = 100 t3.  Estimate dP/dt when t=2, using the method of 
the previous page.  What do you think the exact formula should be for 
dP/dt.  What happens to the number 100?

EX.  Let P(t) = 100 + t3.  Estimate dP/dt when t=2, using the method of 
the previous page.  What do you think the exact formula should be for 
dP/dt.  What happens to the number 100?

EX.  Let P(t) = 100 t1/2.  Use the power rule, and what you have learned 
above to find a formula for dP/dt.  Use this to find the exact value of 
dP/dt when t=4.

Rule:  If you scale a 
function by multiplying 
by a constant C, then 
the derivative is scaled 
by the same constant C.  
(Vertical scaling scales 
the slope too!)

Rule:  If you vertical-
ly shift a function by 
adding a constant C, 
then the derivative is 
the same as the origi-
nal unshifted function.  
(Vertical shifting leaves 
slope unchanged!)

Liebniz wrote this 
rule (in Latin, in 1684).  
"aequ" means "equals."  
We might write it as

dXa = a Xa-1 dx

Dividing by dx,

dXa / dx = a Xa-1.

That's the power rule.

The power rule holds 
for every constant real 
power n, not just whole 
number powers.  Here 
the power is n=1/2, 
which is fine!



D4  Derivative drills:  Linear functions and power func-
A linear function has the form P(t) = mt + b.  The parameter m is called 
the slope, and b is called the y-intercept.  For linear functions, dP/dt is 
the rate of change, i.e., the slope, and it is a constant.  

Example:  If P(t) = 3t + 2, then dP/dt = 3.

EX. Find dP/dt for the linear functions P(t) below.  All letters besides P 
and t are constants.  Hint:  dP/dt is the slope of the line.

P(t) = 5t - 1		  dP/dt = 

P(t) = t + 10		  dP/dt = 

P(t) = 2t		  dP/dt = 

P(t) = -3t + 2		  dP/dt =

P(t) = 10 - t		  dP/dt = 

P(t) = -t		  dP/dt = 
		
P(t) = kt		  dP/dt = 

P(t) = 3t - 2t		  dP/dt = 

P(t) = b + 3t + 1	 dP/dt = 

P(t) = 3			  dP/dt = 

A power function has the form P(t) = ta.  The parameter a is called the 
power or the exponent.  Power functions are often scaled, and some-
times vertically shifted, in the form P(t) = C ta + b.  In this form, C is 
the (vertical) scaling factor, and b is the y-intercept.  For such a power 
function, the derivative is given by dP/dt = C a ta-1.   

Example:  If P(t) = t0.6, then dP/dt = 0.6 t-0.4.

Example:  If P(t) = 3t2 + 5, then dP/dt = 6t.

EX. Find dP/dt for the power functions P(t) below.  All letters besides P 
and t are constants.  
P(t) = t5		  dP/dt = 

P(t) = 1 - t5		  dP/dt = 

P(t) = t-1		  dP/dt = 

P(t) =4t0.5		  dP/dt =

P(t) = 1/t		  dP/dt = 

P(t) = -Ct3		  dP/dt = 
		
P(t) = π t2		  dP/dt = 
 
P(t) = kt0.5 + r		  dP/dt = 

P(t) = tn+1		  dP/dt = 

P(t) = t0		  dP/dt = 

EX.  What is another common way of writing P(t) = t-1 ?  What is anoth-
er way of writing P(t) =4t0.5?  



PK1  Pharmacokinetics:  Ethanol (0th order)
Ethanol is the molecule that makes alcoholic beverages alcoholic.  A 
typical 12oz beer contains about 15 grams of ethanol.  If you drink such 
a beverage, the ethanol molecules quickly distribute throughout your 
bloodstream.  When they pass by the liver, enzymes work at a steady 
rate to convert ethanol into acetaldehyde (an oxidation reaction).  A 
typical rate of conversion is about 10 grams/hour.

EX.  Consider a person who drinks two 12oz beers during a one hour 
period of time.  Let E(t) be the amount of ethanol in their bloodstream, 
as a function of time.  Draw a time-series plot below, displaying your 
expectations for E(t) during a 5-hour period beginning at the moment 
beer-consumption begins.  Draw and label your own axes for this plot.  
(Use a straightedge!)  

EX.  What assumptions did you make in order to create your expecta-
tions for E(t)?

EX.  The derivative dE/dt represents the rate of change of ethanol in 
the bloodstream, measured in grams/hour.  Describe dE/dt during the 
5-hour period you have graphed in one or two sentences with precise 
numbers.

Beer varies consider-
ably.  A typical beer here 
means 5% ABV (alcohol 
by volume).  Budlight is 
4.2% ABV.  An imperial 
stout is about 9% ABV.  
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PK2  Pharmacokinetics:  Gentamicin (1st order)
Gentamicin is an antibiotic that is provided via injection in hospital 
settings.  It does not undergo significant chemical reactions.  After 
injection, gentamicin is gradually cleared from the bloodstream by the 
kidneys.  Simply put, a patient injected with gentamicin molecules will 
pee out gentamicin molecules a little while later.

Load the Gentamicin Dosage Simulator now.  Your goal is to determine 
the best protocol for administering gentamicin to patients.  You can ad-
just the dosage (how much is injected), the frequency (how often injec-
tions are given), and the infusion time (how quickly the injections are 
given).  The green range indicates an ideal therapeutic window, where 
the gentamicin concentration is between 4 and 10 mg/L.  The red range 
indicates the dangerous window where toxic side effects are more like-
ly (gentamicin can cause damage to the kidneys and inner ear).

EX.  Let G(t) be the concentration of gentamicin in the bloodstream at 
time t.  What is happening to the patient when dG/dt positive?  When 
dG/dt is negative?  

EX.  Experiment with dosage, frequency, and infusion, to find a proto-
col which maximizes the time in the therapeutic window and minimiz-
es the time in the toxic window.  Keep the half-life fixed at 3 hours for 
now.  What protocol did you find best?

Dosage: ________	 Frequency: __________        Infusion Time: ______

Within your protocol, how much time per day is the patient within the 
therapeutic window.  Within the toxic window?

Therapeutic duration:  ____________		 Toxic duration:  _________

  
EX.  Some patients may have renal disease, and so their kidneys do not 
filter their blood as quickly.  For such patients, the half-life might dou-
ble to 6 hours.  How does this effect your protocol?  How should you 
change the protocol to help such a patient?



Exp1  Exponential growth of a population

Imagine a population of well-fed bacteria in a dish.  Let t denote time, 
measured in minutes, and P(t) the population at time t.  Assume that 
P(0) = 1000.  There are 1000 bacteria when the clock starts.

Binary fission is a type of asexual reproduction, by which a single bac-
terium duplicates its DNA, elongates, and splits into two new bacteria.
 
Suppose that every 20 minutes, half of the bacteria undergo binary 
fission.  For example, since P(0) = 1000,  P(20) = 1000 + 500 = 1500.  We 
study this highly idealized model below.

EX.  Create a table on the right, which displays 
the population of bacteria for the first hour, 
according to the model above.  Your table 
should include time-points for 0, 20, 40, and 60 
minutes, and should be labeled with units.

EX.  How is P(20) related to P(0)?  How is 
P(40) related to P(20)?  How is P(60) related to 
P(40)?  Write one answer for all of these ques-
tions, using a formula.

_________________________________________

_________________________________________

EX.  At t=120, the population of bacteria can be 
expressed using a formula like

P(120) = 1000 ( ______) _______

Using the previous question, what is the base 
and whole number exponent?  Remember that 
exponentiation is repeated multiplication.

EX.  Write the exponential function which 
describes the population growth in this model.

P(t) = ________ (______)___________

EX.  Sketch the graph the exponential func-
tion P(t), for the first 60 minutes, in the box to 
the right.  Label your axes, as in the Fig 6. of 
Monod.  Mark the data points that you includ-
ed in your table above.    

Bacteria doubling time 
varies by species and by 
environmental con-
dition.  20 minutes is 
typical for E. coli in the 
lab.



Exp2  Doubling times
First, check your answers from the previous page  to make sure that 
you have the correct equation for the population.  Rewrite this below.

P(t) = ______ (____)____

Graph this function on Desmos, changing the axes to focus on the first 
three hours of time.  The result should look something like below.

EX.  At what times do you find the population equal to 4000?  8000?  
10000?  20000?  To answer these questions, zoom in with Desmos to 
approximate to the nearest minute.

	 P(________) = 4000		  P(________) = 8000

	 P(________) = 10000		  P(________) = 20000

EX.  How long does it take for the population to double from 4000 to 
8000?  From 10000 to 20000?  What do you notice?

EX.  Now, use this doubling-time to create a new form for the expo-
nential function P(t), where the base is 2.

P(t) = _________ · 2(t  /________)
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No logarithms yet, 
please!



Exp3  Exponential functions

An exponential function is a function F(t) having the form

	 F(t) = C bt.

Here we use t as our independent variable, as it often represents time.  
The letters C and b are parameters.  We always assume the base "b" to 
be positive, since powers of negative numbers are not always real num-
bers.  We usually assume C to be positive too.

EX.  Graph the exponential function F(t) = C bt in Desmos, using sliders 
for b and C.  Write a few sentences, to describe how the parameters b 
and C affect the shape of the exponential function.  In particular, what 
happens when C crosses the line from positive to negative?  What 
happens when b (always positive) crosses the line from less than 1 to 
greater than 1?

The remarkable fact about exponential functions is the following:

Exponential functions are proportional to their rates of change.

EX.  Repeat the above sentence 10 times each day for the next week.

EX.  To understand this, consider the exponential function F(t) = 10t.  
Estimate dF/dt when t=0, when t=1, and when t=2.  Use the same tiny 
value of Δt in all your estimates.  Use this to complete the table below.  

t F(t) = 10t dF/dt
0
1
2

EX.  Now use the table to complete the following sentence.

If F(t) = 10t, then dF/dt = __________ · 10t.

This says that the rate of change dF/dt is proportional to the function 
F(t).  You have found the constant of proportionality!  

You might be asked to 
write this sentence on 
a test!

Use the techniques 
from page D2:  Estimat-
ing the Derivative.



Exp4  Derivatives of exponential functions
EX.  Working with a group, find the proportionality constants, relating 
each of the exponential functions below to its derivative.

If F(t) = 2t, then dF/dt = __________ · F(t)

If F(t) = 2-t, then dF/dt = __________ · F(t)

If F(t) = 5 ·3t, then dF/dt = __________ · F(t)

If F(t) = 2t/10, then dF/dt = __________ · F(t)
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When F(t) is a function, the derivative dF/dt is also a function.  We have now seen how this 
works for three sorts of functions, so we review this now.

EX.  On the left, graph the given functions.  On the right, find and graph their derivatives.

L

dL
/d

t

t t

Linear:  L(t) = 2t + 1 dL/dt = ___________ 

Q

dQ
/d

t

t t

Quadratic:  Q(t) = 0.5 t2. dQ/dt = ___________ 

F

dF
/d

t

t t

Exponential:  F(t) = 2t. dF/dt = _________2t_ 

2-t = (0.5)t.  That is why 
2-t is an exponential 
function.

2t/10=(21/10)t=(1.072)t.
That is why 2t/10 is an 
exponential function.

An exponential function 
is a function of the form 
C bt, where C and b are 
constants, and b>0.



Log2  Exponents and logarithms, + and ×.
Exponents turn addition into multiplication.

Example:  10(3+4) = 103 × 104.

Why?  Because exponents represent repeated 
multiplication.  For example,

10(3+4) = 107 = 10 × 10 × 10 × 10 × 10 × 10 × 10

and

103 × 104 = (10 × 10 × 10) × (10 × 10 × 10 × 10).

The associative property of multiplication 
guarantees that these are the same.  

The general rule is:

b(x+y) = bx by 
for all numbers x,y, and all positive numbers b.

A consequence is that exponents turn subtrac-
tion into division.  For example,
10(3-4) = 103 ÷104 = 1000/10000 = 0.1.

Why are exponents of 1/2 related to square 
roots?  Well,

x(1/2)· x(1/2) = x(1/2 + 1/2) = x1 = x.
So x(1/2) must be a square root of x.  We take the 
positive square root, e.g., 9(1/2) = 3 not -3.

Logarithms turn multiplication into addition.

log10(1000×10000) = log10(1000) + log10(10000).

EX.  Why?  Explain how the above equality is 
related to the exponents on the left.

________________________________________

________________________________________

________________________________________

________________________________________

________________________________________

The common logarithm log10(x) answers the 
question "10 to what power equals x?"

For a general base b, the base-b logarithm 
logb(x) answers the question "b to what power 
equals x?"  For example, log2(8) = 3, because 2 
to the 3rd power equals 8.

A general rule, for all bases, is

logb(uv) = logb(u) + logb(v), 
for all positive numbers u,v, and b.

EX.  Transform addition into multiplication, or 
vice-versa, to re-express the following.  An-
swers may vary, but should use one of the rule 
above.  Do NOT give a numerical "answer.

10(1+4) = ____________      (Do not write 100000!)

2(2+2) = ______________    (Do not write 16!)
 
33 35 = ______________

5(x+y) = ______________

x(1+t) = ______________

2(x-1) = ______________

2x 4x = 2___________

10(1/2)10(3/2) = ________	     (Do not write 100!)

EX.  Transform the following logarithms using 
the rules above.

log10(100×1000)= _________

log2(0.5)+log2(2)=_________

log3(x2)=____________

log10(xyz)=__________

log2(2x·y)=__________

log10(1003)=_________

log3(3x) - log3(9x)=____

log3(3x) - log3(9x)=____



Log3  Changing bases.
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We introduce two more useful formulas involving logarithms.  Instead 
of memorizing them, we practice using them here.

The first describes the logarithm of an exponent.

	 loga(bx) = x loga(b).		  (a and b must be positive)

Example:  log2(3t) = t log2(3) = 1.585 t, using a calculator in the last step.

The second allows us to change bases of an exponent.

	 ax = blogb(a) x.			   (a and b must be positive)

Example:  1.5t = 2log2(1.5) t = 20.585t, using a calculator in the last step.

This last formula shows that an exponential function with one base can 
be rewritten as an exponential function with another base!  For exam-
ple, any exponential function to be expressed using powers of 2.

	 at = 2log2(a) t.			   (a and b must be positive)

EX.  Use a calculator to fill in the blanks with a number, rounding to 
three significant figures.  Notice that logarithms transform exponential 
functions into linear functions!

log2(3t) = ________ t

log3(2t) = ________ t

log10(2t) = _______ t

log2(0.9t) = _______ t

log2(2t) = ________ t

log2(0.12t) = ______ t

EX.  Fill in the blanks with a number to express the following exponen-
tial functions using a different base.  Use three significant figures.

2t = 1.5_________ t.

10t = 2_________t.

4t = 2__________t.	 (No calculator should be needed!)

0.9t = 2________t.

0.5t = 10_______t.

23t = 3________t.

If your calculator out-
puts 1.2345, then round-
ing to three significant 
figures would give 1.23.  
More examples of such 
rounding are below, 
with the three signifi-
cant figures in boldface.

0.0247158 ⭇ 0.0247
12.389 ⭇ 12.4
0.19234 ⭇ 0.192
1059.9 ⭇ 1060



Exp5  Exponential growth:  3 characterizations.
Let P(t) be a population that grows over time.  When we say this 
growth is exponential, we mean that P(t) is described by a function:

	 P(t) = C bt 	 (Here b and C are positive parameters)

Exponential growth has other characteristics.

1.  Exponential growth has a steady doubling-time... every d units of 
time, the population will double.  We can use doubling-time to express 
population growth as an exponential function where the base is 2.

	 P(t) = C 2t/d.

2.  If we plot the logarithm of population, as a function of time, the 
resulting plot will be linear.  For example, if we use log-base-2, we have

	 log2( P(t) ) = log2(C) + t/d.

This describes a line with slope 1/d and intercept log2(C).

3.  When P(t) grows exponentially, its rate of growth also grows expo-
nentially, with the same base.  If P(t) = C bt, then dP/dt = D bt, for some 
other constant D.  As a result, the rate of population growth is propor-
tional to the population itself.

	 dP/dt = k P

This number k is called the first-order growth rate for the population, 
and we are going to analyze it here.  But first, we introduce a bit of 
new and important notation.  The notation dP/dt is based on Lieb-
niz's "differentials" and it reflects the change in population divided by 
the change in time, which is a rate of change.  Around 1750, Lagrange 
introduced the notation P'(t) for this same thing.  

	 P'(t) means dP/dt (the rate of population change) at time t.

To practice a bit, fill in the following.

EX.  Find the following derivatives, using "prime" notation.

	 If F(t) = t3, then F'(t) = ___________.

	 If L(t) = 5 - 4t, then L'(t) = __________.

	 If P(t) = 10t, then P'(t) = ___________.	(Refer to an old exercise!)

Remember exponential functions are proportional to their rates of 
change.  So if P(t) is an exponential function, then P'(t) = k P(t).

EX.  Estimate this first order growth rate k, when P(t) = 10t.

	 k ≈ __________________

We say "P prime of t" 
when reading the ex-
pression P'(t).  

That's why it's called 
"prime" notation.

Now is a good time to 
go back to the 1st page 
of this lab, and read the 
passage by Neidhardt!



Exp6  The number e, and the equation P' = P.
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Desmos is very good at graphing derivatives, and we will use it to 
answer the following question:  For which exponential function is the 
first order growth rate equal to 1?  In other words, what exponential 
function P(t) has the property that P'(t) = P(t)?  

Using Desmos, graph the function P(t) = bt.  Add the slider for b, allow-
ing the parameter b to vary between 0.1 and 5.  Your input should look 
something like the screenshot below.

	

Graph the derivative of this function on the same plot, by adding a new 
plot with equation y=P'(t).  Finally, study their ratio by adding a new 
plot with equation y=P'(t)/P(t).  If you have entered things correctly, 
then the final P'(t)/P(t) plot should look like a flat horizontal line.

EX.  If b=2, then what is P'(t)/P(t)?  Find your answer with three signif-
icant digits by zooming in with Desmos, or by looking back for a good 
estimate of dP/dt.  Use this to fill in the blank below.

	 If P(t) = 2t, then P'(t) = ___________ · 2t.

EX.  Find a value of b, for which P'(t)/P(t) is as close as possible to 1.  
You may have to adjust your slider settings, e.g., tightening the range 
of possible b values, and using steps of 0.1, 0.01, etc.  Use this to fill in 
the blank below with three significant digits.

	 If P(t) = _______t, then P'(t) = P(t).

Congratulations... you have estimated the very important number 
called "e".  Look up the number e on your computer and write the re-
sult below with ten significant digits.

	 e is approximately equal to ___________________________.

The number "e" is very important for exponential functions.  More spe-
cifically, "e" is that unique number for which

	 If P(t) = et, then P'(t) = P(t).  

	 The population growth rate is equal to the population itself.

	 The first order growth rate is 1.

If you're trapped on a 
desert island, you can 
estimate e using the 
following process:

Start with 1.
Add 1/(1).
Add 1/(1·2).
Add 1/(1·2·3).
Add 1/(1·2·3·4).
Add 1/(1·2·3·4·5).
Etc..

EX.  What do you get 
after these five steps?

________________



Exp7  The natural logarithm:  Definition and drill
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We have seen logarithms base 2 and base 10, as answers to questions 
about exponents with base 2 and 10.  The natural logarithm is the log-
arithm base e, which answers questions about exponents with base e.  
The natural logarithm could be written loge but it is usually written ln.  
Below are three natural logarithms and the corresponding questions.

What is ln(e2)? __________

What is ln(1/e)? _________

What is ln(100)? __________			 

e to what power equals e2?

e to what power equals 1/e?	

e to what power equals 100?

EX.  Use what you know about exponents (not a calculator!) to answer 
the questions in the first two rows above.  Use a calculator (or Google 
"ln(100)") to answer the questions in the last row.  

EX.  What is ln(1)?  Explain why, using properties of exponents.

EX.  Use a calculator to compute ln(100.0001).  Use this to estimate 
ln'(100).  Here ln' denotes the derivative of the natural logarithm func-
tion.  Hint:  ln'(100) is a pretty simple-looking number.

	 ln(100) =

	 ln(101) = 

	 ln(100.1) = 

	
	 ln'(100) = 

The natural logarithm can be used to express general exponents using 
base e.  The following formula is most useful for this purpose.

	 bt = eln(b) t. 

EX.  Use this formula to express exponents in base e.  Express natural 
logarithms with three significant figures.

100t = ______________		         		           (0.5)t = _____________

2-t = _______________ 				            3t+1 = ______________

e is just a number.  It is 
approximately 2.718.  



Exp8  Exponential functions in natural form
Every exponential function can be written in natural form F(t) = C ekt.  
The two parameters are:

	 C is equal to F(0), also called the y-intercept.
	 k is the first order growth rate.

The convenience of this form is that the rate of change F'(t) = k·F(t).

EX.  In the following examples of exponential functions, convert the 
function into natural form and compute its derivative.  Simplify all 
constants, using two significant digits.

Example:  F(t) = 100 · (1.5)t.  

Solution:  F(t) = 100 · (1.5)t = 100 eln(1.5) t = 100 e0.41 t.  This is the natural 
form (with e as the base).  The derivative is given by

	 F'(t) = 0.41 · F(t) = 0.41 · 100 e0.41 t = 41 e0.41 t. 

EX.  F(t) = 20 · (2)t				           EX.  F(t) = 5000 (0.5)t.

Natural form:					         Natural form:

Derivative:					         Derivative:

EX.  C(t) is the amount of Carbon-14 in a sample of seeds placed in a 
jar today.  C(0) = 20 ng (nanograms), meaning there are 20 nanograms 
of this carbon isotope.  Over time, Carbon-14 decays into Nitrogen-14.  
As a result, C(t) decays exponentially, with half-life 5700 years.  This 
means that C(5700) = 10 and C(11400) = 5.  In other words, in 5700 
years, there will only be 10 ng of Carbon-14 in our sample.  

Express C(t) as an exponential function of t with base 0.5.

	 C(t) = _________ (0.5)t/___________

Now express C(t) in natural form.

	 C(t) = _________ e_______________t

What is C'(0) and what does it mean as a physical rate of change?  
  
 

Carbon-14 has 6 protons 
and 8 neutrons in its 
nucleus.  

Nitrogen-14 has 7 pro-
tons and 7 neutrons in 
its nucleus.

In this kind of decay, 
called β-decay, a neu-
tron (n) decays into a 
proton (p), sending off 
an electron (e), and an 
antineutrino (‾ν) in the 
process.



Fit1  Fitting a model with linear regression.
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We have seen three kinds of growth in this chapter:  linear growth, 
power function growth, and exponential growth.  Sometimes we en-
counter data, and we wonder what sort of growth it exhibits.  Graphi-
cal methods, especially log-scaling axes, can be useful for this purpose.  
Load the Linear regression with Log scaling tool for the following.  Simple 
linear regression is the process of finding a line that best fits data.

Lines are often recognizable by eye, and we can draw a "best-fit" line 
y=mx+b to approximate data.  Here m is the slope, and b is the y-inter-
cept.  We use a statistic called R2 to evaluate the quality of the fit.

EX.  Click the Clear Data button, then enter the following data.

X 1 2 2.5 5 3 4 4.5 6 2 6
Y 2 4.2 5.1 9.1 6 7.8 9.1 11 3.9 12.2

Click "Fit Linear Model" to find the line that best approximates the 
data.  Report your results below.

	 Y ≈ ________ X + ________, with R2 = _________

Now we apply these techniques to some real data!

DNA has four nucleotides, abbreviated by the letters A, T, C, and G.  
An A on one strand is matched with a T on the other strand, and a C 
on one strand is matched with a G on the other strand.  Such matched 
pairs are called base pairs (bp).  The GC-content of DNA is the percent-
age of the nucleotides which are C or G.  The GC-content affects the 
melting temperature Tm, defined as the temperature at which half of the 
nucleotides separate from each other.  This is very important when se-
quencing DNA, and regions of DNA with very high or low GC-content 
can be difficult to sequence reliably.  

The following table gives the GC-content (GC%) and melting tempera-
ture Tm for ten different chunks of human DNA, about 50000 bp each.

GC% 10% 10% 20% 20% 30% 30% 40% 40% 50% 50%
Tm (°C) 62 59 65 66 70 69 73 74 78 77

EX.  Use the Linear regression with Log scaling tool to find the best linear 
model of melting temperature as a function of GC-content.  What is the 
R2 statistic?

	 Tm ≈ __________ GC % + _____________,   with R2 = 
 

The statistic R2 is called 
the coefficient of deter-
mination.  When R2 = 
1.0, the line perfectly fits 
the data.  R2 is a number 
between 0.0 and 1.0, 
and it answers the ques-
tion:  "How much of the 
variation of the data is 
explained by the linear 
model?"

The following 5bp long 
chunk of DNA has 
GC-content 40%.

A  T  G  C  T

T  A  C  G  A

The GC pairs are stuck 
together with 3 hydro-
gen bonds, and the AT 
pairs are stuck together 
with 2 hydrogen bonds.  
It takes more heat 
energy to break the GC 
pairs.  

Data on the left is 
adapted from The 
Human Genome Melting 
Map by Liu et al., in 
PLOS Computational 
Biology, May 2007.



Fit2  Linear regression after log scaling.
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If y is an exponential function of x, having the form y = C ekx, then the 
logarithm of y will be related linearly to x.  If y = C ekx, then ln(y) = kx + 
ln(C).  Or we can go the other way too.  

	 If ln(y) = mx + b, then y = eb · emx.  

EX.  Click the Clear Data button, then enter the following data.

X 20 40 60 80 100 120
Y 1000 1480 2240 3300 5000 7100

Click "Fit Linear Model" to find the line that best approximates the 
data.  Report your results below.

	 Y ≈ ________ X + ________, with R2 = _________

EX.  Now select Logarithm Base:  Natural (base e), and press the button 
to change the y-axis scale from linear to log.  Then click the "Fit Linear 
Model" button to find the line that best approximates the plot.  

	 ln(Y) ≈ ________ X + ________, with R2 = _________
   
EX.  Use this to find the exponential function that best describes the 
relationship between X and Y.

	 Y ≈ _________ e __________ X

EX.  In what way does the exponential function fit the data better than 
the linear function?

If y is a power function of x, having the form y = C xp, then the loga-
rithm of y will be related linearly to the logarithm of x.  If y = C xp, then 
ln(y) = p ln(x) + ln(C).  Or we can go the other way too.

	 If ln(y) = m ln(x) + b, then y = eb ·xm.

EX.  Click the Clear Data button, then enter the following data.

X 1 3 4 0.5 2.5 1.2
Y 3 25 50 0.76 19 4.2

Now change both y-axis and x-axis from linear to log (base e).  Click 
the "Fit Linear Model" mutton.  Use the results to find a power function 
that best fits the data.

	 Y ≈ _________X___________________.

This data should re-
mind you of the ex-
ponential growth of a 
population!



Fit3  Modeling power function growth
A long-standing question in physiology is the relationship between the 
mass of organisms (especially endotherms like birds and mammals) 
and their metabolic rates.  The data table here is extracted from a 1932 
paper of Max Kleiber.  

Animal Weight (kilograms) Cals./day per animal
Steer 679 8274
Steer 342 6255
Cow 388 6421
Man 64.1 1632
Woman 56.5 1349
Sheep 45.6 1219
Male dog 15.5 525
Female dog 11.6 443
Hen 1.96 106
Pigeon 0.300 30.8
Male rat 0.226 25.5
Female rat 0.173 20.2
Ring dove 0.150 19.5

  
EX.  Select 10 from the 13 animals above in a biologically appropriate 
way.  How did you make your selection?

EX.  Use the Linear regression with Log scaling tool to plot these 10 data 
points, with weight W (kilograms) on the horizontal axis and metabolic 
rate MR (cals/day) on the vertical axis.  Describe this relationship in 
one sentence.

EX.  Click the Log(X) and Log(Y) buttons to study the relationship be-
tween logarithms. Use natural logarithms (ln).  Report the linear func-
tion which best models this relationship, together with the R2 statistic.

	 ln(MR) = ________ ln(W) + _________,   with R2 = ___________

EX.  This suggests that metabolic rate MR is related to weight W ac-
cording to a power law.  What is the power law?

	 MR ≈ _____________ · W_____________

See Body Size and Metab-
olism, by Max Kleiber, 
in Hilgardia: a Journal 
of Agricultural Science, 
January 1932.  For a 
more recent review, 
see Allometric Scaling of 
Mammalian Metabolism, 
by White and Seymour, 
in the Journal of Experi-
mental Biology, 2005.

Hint:  the formula
ln(y) = p ln(x) + ln(C)
is equivalent to the 
formula

y= C xp.



Fit4  Modeling exponential decay
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In this last data-fitting exercise, we consider the degradation of aspirin 
(acetylsalicylic acid).  A study participant is given a 1000mg dose of 
aspirin, and the plasma concentration of aspirin (the amount floating 
in the bloodstream) is measured at various intervals.  The table in the 
margin displays these concentrations over time.

EX.  The given data begins when the patient first ingests the aspirin 
tablet.  To study the degradation of aspirin, which data points are most 
relevant and why?

EX.  Use the Linear regression with Log scaling tool to plot these most rel-
evant points.  Let A(t) be the plasma concentration of aspirin at time t.  
Describe the line which best models the relationship between ln(A(t)) 
and t.

	 ln(A(t)) ≈ __________ t + ____________, with R2 = __________

EX.  Use this to model A(t) as an exponential function of t, in natural 
form (base e).

	 A(t) ≈ _________ e______________t.

EX.  If the same person receives a different dose, like 500mg or 2000mg, 
which of the above numbers would you expect to be similar to the 
1000mg dose?  Why?

EX.  What is the half-life of aspirin in this patient?  In other words, 
estimate how many minutes it takes for the plasma concentration of 
aspirin to be reduced by 50%.  

The following data is 
fictional, but adapted 
from Figure 3A of In-vi-
vo disintegration and ab-
sorption of two fast-acting 
aspirin tablet formulations 
compared to ibuprofen 
tablets using pharmaco-
scintigraphy, by Stevens 
et al., in the Journal of 
Drug Delivery Science, 
2019.

Time 
(min.)

Aspirin
Concentration 
(ng/mL)

0 0
15 9000
20 15000
25 15000
30 9000
40 7500
50 5000
60 3100
70 2100
80 1700
90 1600
120 400
180 100
240 0



MG1  Modeling growth:  distinguishing three types.
EX.  Complete each of the following sentences with "linear growth" or "power function growth" 
or "exponential growth".  

If dP/dt = 3, then P exhibits ____________________________________.

If dP/dt = 2P, then P exhibits ___________________________________.

If dP/dt is a power function, then P exhibits ___________________________________.

If dP/dt is an exponential function, then P exhibits ___________________________________.

If the rate of change of P is constant, then P exhibits___________________________________.

If P is proportional to its rate of change, then P exhibits ___________________________________.

If P(t) = 3t2, then P exhibits ___________________________________.

If its time-series plot is a straight line, then P exhibits ___________________________________.

If the time-series plot of ln(P) is a straight line, then 

						      P exhibits ___________________________________.

If P(t) = ekt then P exhibits ___________________________________.

If log2(P(t)) = 2 log2(t), then P exhibits ___________________________________.

If P increases by 3 each year, then P exhibits ___________________________________. 

If P increases by 3% each year, then P exhibits ___________________________________.

If ln(P) increases by 2 each year, then P exhibits ___________________________________.

If B is the volume of a balloon whose radius is given by R = 3t, then B exhibits

						      ___________________________________.



MG2  Modeling growth:  reflections
EX.  Choose one of the previous three models (GC-content and melting 
temperature, metabolism and weight, aspirin concentration and time).  
Evaluate the model, using the criteria for model evaluation from the 
first lab.  Which aspect of model evaluation does the R2 statistic help 
with?  



Figure 27, p.148, from "Elements of Physical Biology," by Alfred Lotka, published in 1925.  These figures 
show ten "fundamental types of equilibrium," in a system with two state variables.  We have seen some 
before in our study of sharks and tuna, and insulin and glucose.   



Laboratory 3
equilibrium

Equilibrium, at first glance, is a concept about not changing.  A full 
bathtub, a healthy person with body temperature 98.6°F, two symbiotic 
species in harmony—these may all be systems in equilibrium.  Writing 
about equilibrium more than 100 years ago, Lotka introduces three 
notions of equilibrium.

1.  "...from the standpoint of kinetics, defining [equilibrium] as a 
state in which certain velocities vanish..."

2.  "...a dynamic conception:  Aequa libra, the poised balance, is 
symbolic of a state in which forces are balanced, in which the 
resultant force vanishes..."

3.  "A third conception of equilibrium... is derived from a con-
sideration of energy relations.  A system in dynamic equilibri-
um is found to be characterized by the attainment of a mini-
mum (or sometimes a maximum) of certain functions having 
the dimensions of energy." 

Equilibrium is not just about not moving (velocities vanishing).  In 
physics it is based on a balance of force, every push countered by a 
pull, to keep things in balance.  In a broad range of systems, equilib-
rium is characterized by the attainment of a minimum or maximum 
energetic state.  

The study of equilibrium, Lotka notes, is not the study of a single static 
state in isolation... it is about the relationship between that state and 
"nearby" states.  Look at the diagrams A-J on the opposite page, which 
display trajectories in various state spaces.  Each diagram contains a 
single equilibrium point.  Can you find it?  What happens "near" the 
equilibrium point?  How would you describe what happens in words?   

EX.  For one of the diagrams (A-J), redraw the diagram in the margin, 
identify the equilibrium point with a bold star, and write a sentence 
about what happens near the equilibrium point. 

From "Elements of 
Physical Biology," by 
Alfred Lotka, 1925, pp. 
143-144.
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LO1 Logistic growth:  Growth and crowding
The marine bacterium Vibrio natriegens divides very rapidly.  Under 
optimal conditions, its population obeys the change equation,

P' = 0.07 P

Here P denotes the number of bacteria, and our unit of time is minutes.  
Recall that P' (out-loud "P-prime") is our shorthand symbol for the 
derivative dP/dt.  

EX.  Assume the similar "discrete" change equation ΔP/Δt = 0.07 P, 
where the time interval is Δt = 1 minute.  Fill in the blank to describe 
the population growth, according to this discrete-time model.

	 Each minute, the population increases by ______ percent. 

EX.  Now, return to the original change equation P' = 0.07 P.  There is an 
exponential function which satisfies this equation, namely

	 P(t) = C e0.07 t  

Fill in the blank to describe the population growth according to the 
function above (a continuous-time model).

	 Each minute, the population increases by _______ percent.

We see that the continuous-time equation P' = 0.07 P and the dis-
crete-time equation ΔP/Δt = 0.07 P behave similarly, with a small 
difference in rate of population growth.  The per-minute growth rate 
should be very close to the first-order growth rate 0.07.  

Populations do not grow endlessly.  A more realistic model incorpo-
rates not only the maximum division rate of the bacteria, but also a 
negative effect of crowding — when organisms are too close to each 
other, they can compete for resources or otherwise hurt each other, 
slowing growth.  The resulting change equation should look like

P' = [birth rate] P  -  [bad effects of crowding]

We understand the birth term (0.07 P).  But what should the "bad ef-
fects of crowding" term look like?  Crowding effects should get worse 
as the population increases, but in what manner?  

To explore the effects of crowding, load the Self-Interaction Simulator, 
and start experimenting.  In this simulator, organisms are randomly 
placed in a dish and they start moving.  They move for a second then 
turn a random direction and move some more, etc.  They bounce off 
the walls of the dish, and you should see a little "firework" when they 
hit each other.

The general rule for de-
rivatives of exponential 
functions:  If 

P(t) = C ekt, 
then 

P'(t) = k C ekt.

Note that P' = k P.

See Eagon RG, Pseu-
domonas Natriegens, a 
marine bacterium with 
a generation time of less 
than 10 minutes.  J.  Bac-
teriol 83 (1962).



LO2  Logistic growth:  Self-interactions
EX.  Each "run" of the simulator should take 10 seconds.  Use 10 runs 
of the simulator, with different numbers of particles (between 2 and 
50), and record the total number of "hits" that occur in each run of the 
simulator.  For example, if you run the simulator with 10 particles, you 
should find between 5 and 12 hits.  Record this data on the table on the 
right.

EX.  Enter this data into the Logistic Regression with Log Scaling tool, 
using "number of particles" on the X-axis and "number of hits" on the 
Y-axis.  Graph ln(Y) vs. ln(X) in the Data Plotter, and copy the graph 
below.  Make sure to put small circles to represent your actual observa-
tions, draw the best-fit line, and report the slope and R2 value.

EX.  Model the relationship between the "number of hits" and the pop-
ulation by a power function, using your best-fit line above.

	 H(P) ≈ __________ P________

If "hits" or "interactions" of organisms have a negative effect on the 
population, then we expect the change equation to look like

	 P' = [birth rate] P - [interaction effect] P________

Here, fill in the blank with the same power of P.  Your power should be 
pretty close to 2... otherwise go back and check for mistakes!

The simplest model of constrained population growth is the logistic 
model, when H(P) is proportional to P2.  The logistic growth model is

	 P' = βP - γP2. 

The parameter β is the birth rate (or growth rate), and the parameter 
γ describes the magnitude of the crowding effect.  Even if this is not a 
perfect model of population growth, we aim to understand it well.  The 
logistic model exhibits general phenomena of exponential growth with 
constraint, and a stable equilibrium point.  

ln(Population)

ln
(H

its
)

Enter your data below.

Population Hits

Slope of line: _______

R2 = ______________

This model was named 
"logistique" and first 
studied by Pierre-
François Verhulst in La 
Loi D'Accroissment de 
la population (the Law 
of Population Growth), 
published in Nouveaux 
Mémoires de l'Académie 
Royale des Sciences et 
Belles-Lettres de Brux-
elles (1845).



LO3  Logistic growth:  The model
The logistic model pushes the boundary of what we may reasonably 
compute by hand (though Verhulst did this back in the 1840s).  We do a 
bit by hand before using computational tools in what follows.

Consider our fast-dividing bacterium Vibrio natriegens from before, 
but with negative self-interactions.  They are modeled by the change 
equation

	 ΔP/Δt = 0.07 P - 0.000035 P2.  

Here we use discrete time, with interval Δt = 1 minute.

EX.  If you have 1000 bacteria at time t=0, how many do you expect to 
see after one minute, using the equation above?   Use a calculator!

EX.  If you have 3000 bacteria when the clock starts, how many bacteria 
do you expect to see after one minute, according to the change equation 
above?  Use a calculator!

EX.  At some values of P, the change equation tells us ΔP/Δt = 0.  What 
are these values of P?  Divide your decimals with care, using a calcula-
tor if needed.    

Return to the continuous-time logistic growth model, P' = βP - γP2.  
When P' = 0, the population is at equilibrium, meaning that the rate of 
population change is zero, i.e., the population does not change.  We can 
solve an equation to see when this happens.

	 P' = 0 occurs when βP - γP2 = 0;
	 This occurs when  P(β - γP ) = 0;
	 This occurs when P = 0 or when β - γP= 0;
	 This occurs when P = 0 or when β = γP;
	 This occurs when P = 0 or when P = β/γ.

When the population is between 0 and β/γ, P' is positive and the pop-
ulation grows.  When the population is bigger than β/γ, the negative 
effects of interaction exceed the birth rate, and the population declines.  
We graph these observations below on a phase portrait.

0 β/γ

Stable equilibriumUnstable 
equilibrium

Population



LO4  Logistic growth:  Exploration of parameters
The logistic model of population growth has the form

	 P' = βP - γP2.		  (‡)

The two parameters are the (net) birth rate β and the negative effect of 
crowding γ.  Equilibrium is found when P' = 0, which occurs when

	 P = 0 or P = β/γ

This second equilibrium is called the carrying capacity by ecologists, 
since it represents the sweet spot at which the population is stably max-
imized; it is the largest number of organisms which the environment 
can sustain.

EX.  Let C = β/γ be the carrying capacity.  Use algebra to show that the 
equation (‡) is equivalent to the equation P' = β P (1 - P/C).

The logistic model is one of those very rare change equations where we 
can describe trajectories with a formula.  Such a formula is

	 P(t) =  Ceβ(t-t0)

1 + eβ(t-t0)  solves the change equation P' = βP(1 - P/C).

Load the Logistic Growth Explorer.  For now, you will be ignoring the 
data table and time-shift t0, and exploring the parameters β and C. 

EX.  What happens to the population P(t) as t grows large?  How does 
this relate to the carrying capacity C?

EX.  What is the population at time zero, i.e., what is P(0)?  Note that t0 
= 0 here.  Relate your answer to the parameter β or C.   

EX.  How does the birth-rate parameter β change the shape of the 
graph of P(t)?  Use the change equation to find a formula for P'(0) 
involving β and C.

	
	 P'(0) = _________________

It is difficult to derive 
this formula; that would 
be done in a class on 
differential equations.  
We just take it on faith 
here.
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Ph1  Phase portraits:  Solving equations
If X' = f(X) is a change equation involving one quantity X, then equilib-
rium points can be found by answering the question:  when is X' = 0?  
Answering this question is the same as solving the equation f(X) = 0.  
So we practice techniques for solving such equations here.

EX.  Solve the following equations for X.  Write your solution as a com-
plete "If... , then..." sentence, with all possible solutions listed with "or" 
separating possibilities.  Technique hints are in the margin.

Technique:  If X2 = C, 
then X = ±√C.

Technique:  
If abc = 0, then 
a = 0 or b = 0 or c = 0.

Technique:  If ab = 0, 
then a = 0 or b = 0.

Technique:  Same as 
above, but with un-
known constants k and 
C.

Technique:  If a/b = 0 
then a = 0!

Technique:  
Use Desmos!  Report 
three significant figures.

Technique:  Not all 
equations have solu-
tions!

Mix techniques from 
above.

Technique:  Powers of 
positive numbers are 

Example:  X2 - 1 = 0.  
Solution:  If X2 - 1 = 0, then X = 1 or X = -1.

Solve:  (X - 3)(X-2)(X-1) = 0.	
	
Solution:

Solve:  7X (1 - 0.001 X) = 0.
	
Solution:  

Solve:  kX ( 1 - X/C) = 0.
	
Solution:

Solve:  X - 1 
X2 + 3 = 0.		

	
Solution:

Solve:  e-X + X - 2 = 0.	
	
Solution:

Solve:  X2 + 1 = 0.

Solution:  

Solve: 3X(1-X)
X2+1  = 0.

Solution:

Solve:  X(1 + e-X) = 0.

Solution:  



EX.  Now for each of the problems on the previous page, draw the 
phase portrait.  Your phase portrait should contain dots for every equi-
librium point (filled for stable, empty for unstable).  Label dots by their 
location (X-value).  Draw arrows to show the direction of trajectories.

Example:  X' = X2 - 1  

X' = (X - 3)(X-2)(X-1)
	

X' = 7X (1 - 0.001 X).

X' = kX ( 1 - X/C).
	

X' =  X
3 + 1
X2 .

X' = e-X + X - 2.
	

X' = X2 + 1.

X' =  3X(1-X)
X2+1 .

X' = X(1 + e-X).

Ph2  Phase portraits:  Finding and classifying equilibria

-1 1
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Ph3  Phase portrait:  Allee effect
The phase portrait is a new sort of visualization, and here we demon-
strate how to generate and interpret the phase portrait.  We consider a 
population of mice, among which some have a genetic mutation.  Let 
Q(t) be the proportion of mice that possess this mutation.

So Q(t) represents (number of mice with mutation) / (number of mice).

EX.  What are the possible values of Q(t)?  Minimum?  Maximum?

	 Q(t) must be between ___________ and ___________.

EX.  The spread of this mutation in the population can be modeled 
by the change equation Q' = 2Q (1 - Q) (1 - 3Q).  What values of Q are 
equilibrium points?  

	 Q' = 0 when Q = ________ or Q = ________ or Q = _________

EX.  Use Desmos to graph the function f(Q) = 2Q(1-Q)(1-3Q).  Use this 
to draw a graph of Q' vs. Q below.  Note the domain of the function 
when drawing the graph below.

Q

Q
'

1.0

-0.5

0.5

EX.  Now, on the phase portrait above, we have marked the two un-
stable equilibrium points for this change equation.  Mark the stable 
equilibrium point, and draw arrows to complete the portrait.  

EX.  If 10% of the mice have the mutation at t=0, then what proportion 
of the mice will have the mutation when t is large?

EX.  If 90% of the mice have the mutation at t=0, then what proportion 
of the mice will have the mutation when t is large?

Algebra technique:  
If abc = 0, then 
a = 0 or b = 0 or c = 0.

Hint:  Follow the trajec-
tory in the phase por-
trait.  Use your arrows!  



Ph4  Phase portraits and trajectories (abstract)
The phase portrait below displays a relationship between X' and X.  
Unstable equilibrium points are shown with an empty circle, and stable 
equilibrium points are shown with a solid circle.

0 1

X

X'

1.0

-0.5

0.5

0.3 0.6

EX.  If X(0) = 0.2, how will X(t) behave as t grows large?

EX.  If X(0) = 0.5, how will X(t) behave as t grows large?

EX.  If X(0) = 0.3, how will X(t) behave as t grows large?  What if X(0) 
gets "bumped" just a tiny bit to the left or right?

EX.  Use the previous exercises to sketch time-series plots of X(t), using 
the starting values X(0) = 0, 0.2, 0.3, 0.4, 0.7,0.9, and 1.0.

0.3

0.0

0.6

1.0

time (t)

X

EX.  Draw a graph displaying X (between 0 and 1) on the horizontal 
axis and X' on the vertical axis.  Be creative but consistent with the 
above phase portrait.  



Lac1  From the logistic model to the lac operon 

The logistic model reasonably describes a great variety of populations.  
The curve above displays the population growth of fruit flies (Drosoph-
ila) studied by Raymond Pearl in 1920.  Pearl, in "The Biology of Pop-
ulation Growth," argued that populations, from yeast to fruit flies to 
people, exhibit the same shapes of population growth.  

In microbiology, the study of population growth is not so fraught with 
the challenges of social science.  Something interesting is afoot when 
population growth does not fit a logistic model.  In particular, Monod 
found biphasic growth, or what he called diauxie—one growth cycle 
and then another, separated by a pause—when looking at populations 
of E. Coli bacteria in which a typical food (glucose) was limited and 
alternative food (sorbitol) was provided.  In three experiments (graphs 
A,B,C below), different amounts of glucose and sorbitol were provided; 
the first growth was proportional to the amount of glucose and the sec-
ond to the amount of sorbitol.  This demonstrated that the E. Coli were 
eating the glucose first, pausing, then eating the sorbitol.  

What happens during the pause?  How did these little bacteria sud-
denly gain the ability to metabolize sorbitol?  Why didn't they just eat 
what was available from the beginning?  The full answer is given by 
the intricate mix of genetics and biochemistry known as the lac operon.  
We focus on the more basic question:  how can a dynamical biological 
system exhibit a switch?  

More dramatically, Lot-
ka fits the population of 
the United States, from 
1790-1910, to a logistic 
model.  He extrapolates 
to predict a U.S. popu-
lation of 197 million in 
the year 2060, caution-
ing that such a forecast 
must be "accepted with 
reserve."

Figure 9 from Growth 
of Bacterial Cultures, by 
Jacques Monod, Annu 
Rev. Microbiol. 1949.

12 years later, Jacob and 
Monod began to under-
stand these patterns in 
Genetic Regulatory Mech-
anisms in the Synthesis 
of Proteins, J. Mol. Biol. 
1961, leading to their 
1965 Nobel Prize.

Figure 5 from Lotka's 
"Elements of Physical 
Biology," 1925 Edition.  
This graph is based on 
earlier studies of Pearl; 
see Figure 15 of "The 
Biology of Population 
Growth," by Raymond 
Pearl.  Reading Pearl 
nowadays, his model-
ing of human popula-
tion growth is grounded 
in overtly colonial, 
racist, and sexist ideas.  
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Lac2  Lactose in E. Coli.  The basic model.
Glucose and lactose are sugar molecules.  When grown in an environ-
ment with varying amounts of glucose and lactose, it appears that E. 
Coli first metabolize the glucose, and when that runs out, they switch 
to lactose.  The lac operon gives them the capability to switch, and it is 
a classic example of a bistable system—a system with two stable equi-
librium points.  

We begin with lactose only.  Consider a population of E. Coli in a dish.  
The scientist has prepared the dish so that it contains lactose.

State variable:  Let L be the amount of lactose within the E. Coli bacte-
ria.  This is called intracellular lactose.

Change equation:  The intracellular lactose changes for two reasons:  
first, the E. Coli brings lactose inside through its cell membrane.  For 
this to happen, i.e., for lactose to permeate the membrane, the cell 
needs to produce an enzyme called lactose permease.  Second, once 
the lactose is inside the E. Coli, the bacterium metabolizes the lactose, 
breaking it down into other molecules.  Thus the change equation 
should look like

	 L' = [lactose permeation rate] - [lactose metabolic rate]

A bit of lactose always permeates into the E. Coli.  But generally, the 
lactose permeation rate is directly related to the amount of the enzyme 
lactose permease.  This amount increases in the presence of lactose up 
to a saturation level.  As a result, the lactose permeation rate is mod-
eled well by a Hill-type equation.

	 P(L) = 0.01 + L2

1+L2 .  

EX.  Using Desmos, what are the upper and lower bounds for the 
function P(L)?  Compare and contrast this function to the Hill function 
studied in the insulin-glucose model.  Answer in 2-3 sentences.

On the previous page, 
we mentioned glucose 
and sorbitol (a sugar 
alcohol).  Similar di-
auxie were found with 
many pairs of sugars by 
Monod in his earliest 
works.

Permeate:  (verb)  To 
penetrate or diffuse 
through, as in a mol-
ecule permeating a 
membrane.

The presence of lactose 
increases the production 
of lactose permease, 
which allows even more 
lactose into the bacteri-
um.  This is a positive 
feedback loop!



Lac3  Lactose system:  Equilibria
Once the lactose gets inside the E. Coli, the bacterium can happily feast 
on it.  The metabolism of lactose follows a first-order pattern, where 
the amount of lactose metabolized is proportional to how much lactose 
is inside the E. Coli.  We use the proportionality constant 0.4 here, so the 
lactose metabolic rate is given by M(L) = 0.4 L.

Putting this together with permeation rate, we have L' = P(L) - M(L), or

	 L' = 0.01 + L2

1+L2  - 0.4 L.
 

EX.  Equilibrium occurs when the amount of lactose going into the E. 
Coli equals the amount of lactose metabolized by the E. Coli.  On the 
axes below, plot the functions P(L) and M(L), and highlight the equi-
librium points.  Label your two plots so that it is clear which is perme-
ation rate P(L) and which is metabolism rate M(L).

Intracellular Lactose (L)

Ra
te

 o
f c

ha
ng

e

EX.  Use the formula L' = P(L) - M(L) to draw a phase portrait for the 
lactose system below.  Use Desmos to approximate the equilibrium 
points to three significant digits, and label the points accordingly.

EX.  This kind of system exhibits what we call all or nothing behav-
ior.  With reference to the phase portrait above, what do you think this 
means?

Don't forget to make 
filled/empty circles for 
stable/unstable equilib-
ria, and draw arrows to 
indicate the direction of 
trajectories.

Gentamicin and aspirin 
were previous examples 
of first-order metab-
olism (exponential 
decay).
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Lac4  Lactose system:  Glucose and the switch
When E. Coli eat their favorite food, glucose, a side effect is that a 
protein binds to the lactose permease, making it unable to help lactose 
permeate into the cell.  If the amount of glucose is g, then the lactose 
permeation rate becomes

	 P(L) = 0.01 + L2

1+(1+g)L2 .  

EX.  Use the same method as before, to plot P(L) and M(L) for various 
values of g (between 0 and 2) in Desmos.  Do not reproduce your plots 
here.  But describe the equilibrium point(s) in the absence of glucose 
(when g = 0) and when there is a lot of glucose (when g = 2).

EX.  Monod found that  when E. Coli are grown in a plate with both 
glucose and lactose, they first consume glucose, and then consume 
lactose.  How does our model explain this?

Glucose affects the lac-
tose system in multiple 
ways; we only intro-
duce one here.  Note 
that in the absence of 
glucose, g=0, this func-
tion is the same as the 
previous function P(L).



GE1  The Central Dogma
The "Central Dogma" 
of molecular biology 
comes from this unpub-
lished note by Francis 
Crick, 1956.   

Image Credit: Wellcome 
Library, London. 

Genes are chunks of a DNA sequence.  They have marked beginnings 
and ends, and we can read them out as sequences of letters A,T,G,C us-
ing modern technology.  Some human genes are 500 letters long, some 
are over a million letters long.  You can download all of the genes for 
humans and many other species.

The letters from a gene are transcribed onto messenger RNA (mRNA).  
Some portions within the gene (the introns) are snipped out, and others 
(the exons) are kept for the mRNA.  The mRNA travels from the nu-
cleus (where DNA is stored) out into the cytoplasm.  Nowadays, we 
can count these mRNA transcripts in a single cell.  A single gene might 
be transcribed many times, leading to hundreds of mRNA transcripts 
floating around.  Or, a single gene might not be transcribed at all, lead-
ing to no mRNA transcripts!  

In the cytoplasm, the ribosomes translate the information from mRNA 
to build proteins.  We can also measure how much of various proteins 
is contained in a cell.  This is called proteomics.  It is more difficult than 
counting mRNA transcripts, at least for now.

This whole process, from DNA to mRNA to proteins, is called gene 
expression.  A single gene on a single strand of DNA can be transcribed 
many many times, producing lots of mRNA.  Each transcript can go to 
the ribosomes to produce lots of protein molecules.  The protein mol-
ecules are the ones that carry out all the "functions" of day to day cell 
life.  For each gene, we can measure two quantities within a cell.

	 Let R be the number of mRNA transcripts contained in the cell.  

	 Let P be the number of protein molecules contained in the cell. 

Go to the UCSC Ge-
nome browser, at ge-
nome.ucsc.edu.  There 
you can enter a gene, 
and find all sorts of 
information, including 
its sequence of A,T,G,C 
letters.

DNA (gene)

        transcription

mRNA (transcript)

        translation

Protein
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GE2  The dynamics of gene expression
When a gene is expressed, mRNA is produced at a transcription rate:  
p molecules per hour.  At the same time, mRNA degrades with first-or-
der rate constant δ.  The resulting change equation is   

	 R' = p - δ R.

EX.  Some mRNA transcripts degrade in minutes, while others last 
for days.  This depends on the particular gene and cell.  Based on this, 
what are realistic values of the decay rate δ in the change equation?

	 The decay rate is between __________ and ____________  

EX.  What is the number of mRNA transcripts, when the system is in 
equilibrium?  Express your answer algebraically in terms of p and δ.

	 The equilibrium number of transcripts is __________________

The ribosomes translate the mRNA transcripts to make proteins (with-
out destroying the mRNA).  In this way, the rate of protein production 
depends on the number of mRNA transcripts; additionally, protein 
molecules degrade with a first-order rate constant γ.  The resulting 
change equation is

	 P' = βR - γP.  

Here β is called the translation rate.

EX.  What is the number of protein molecules, when the entire system 
is in equilibrium?  Express your answer algebraically in terms of the 
parameters p, δ, β, γ.  

	 The equilibrium number of protein molecules is ___________

EX.  Draw a time series, indicating what happens if R and P begin at 
zero.  Your time series should contain two line plots:  one for R and one 
for P.  Choose realistic values for all rates, based on what you can look 
up about mRNA and protein transcription/translation and degradation 
in a single cell.

The model here is 
adapted from a minimal 
model discussed in Cen-
tral dogma rates and the 
trade-off between precision 
and economy in gene 
expression, by Hauser et 
el., Nature Communica-
tions (2019).



Chem1  Chemical kinetics:  Decomposition of H2O2

Hydrogen peroxide H2O2 is a molecule with two hydrogen atoms and 
two oxygen atoms.  It is sold at pharmacies in a solution of water.  If 
you pour some out, you will see bubbles, as it undergoes a reaction

	 2 H2O2 → 2 H2O + O2.

This means that two hydrogen peroxide molecules (the reactants) de-
compose, and the results (products) are two water molecules (a harm-
less puddle) and one oxygen molecule (bubbles).

When molecules are in a solution, we typically study their concen-
tration:  how many molecules are in each unit of volume.  A typical 
concentration of H2O2 is 1 molar, meaning there is about 1 mole (6 · 1023 
molecules) of hydrogen peroxide in a 1 Liter bottle.

Imagine you open a 1 Liter bottle of hydrogen peroxide and pour it 
out into a large bowl.  Let C(t) be the concentration of H2O2 at time t.  
This concentration is usually written [H2O2] by chemists.  The decom-
position reaction is a first order reaction, which means that it exhibits 
simple kinetics; concentrations change over time according to the rule

	 C' = - k C, or in chemist notation, 
d[H2O2]

dt  = -k [H2O2]

where the rate constant k depends on the reactant, temperature, and 
other environmental variables.

  
EX.  Draw a phase portrait for the hydrogen peroxide system.  What do 
the equilibrium point(s) mean about the system?
  

EX.  A typical rate constant k for the decomposition of H2O2 would be 
k=0.04, if time is measured in minutes.  Given a starting concentration 
[H2O2] = 1M, describe [H2O2] as an exponential function of time, in 
natural (base e) form. 

EX.  After how many minutes (round to the nearest minute) do you 
expect 90% of the hydrogen peroxide to decompose?

This should be an sim-
pler phase portrait than 
the last few pages!

The kinetics of a chem-
ical reaction refers to 
how quantities of var-
ious molecules change 
over time.  
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Chem2  Chemical kinetics:  Dissociation of water

Water is a molecule with two hydrogen atoms and one oxygen atom.  It 
falls out of the sky, comes out of your faucet, and still people buy it in 
little bottles.  We think of water as stable, but it breaks apart sometimes.  
The dissociation of water is the following reaction:  H2O ↔ H+ + OH-.

This reaction is reversible, which means that those ions H+ and OH- 

love to bond with each other, turning back into water again.  The kinet-
ics of this reaction are governed by the change equations:

	 d[H2O]
dt  = β [H+] [OH-] - δ [H2O].

	
d[H+]

dt  = d[OH-]
dt  = - d[H2O]

dt .

EX.  The terms with Greek letters β and δ indicate the "birth" and 
"death" of water molecules.  In light of sharks and tuna, why is there a 
term with the product [H+] [OH-] ?

  

EX.  The second line of equations states that three rates are equal to 
each other.  How does that reflect physical reality?

EX.  Realistic values are β = 1.3 · 1011 and δ = 2.34 · 10-5  in typical condi-
tions (units are M-1s-1 and s-1).  If the dissociation system is in equilibri-
um, one finds that 

	 [H+] [OH-] = _____________ [H2O].

Find the value of the missing constant!  

A liter of water contains about 55.56 moles of water molecules, so [H2O] 
= 55.56.  Use this and the fact that [H+] = [OH-], to find the concentra-
tion of hydrogen ions and hydroxide ions.

	 [H+] = [OH-] = _____________ 

The pH of water is defined by pH = -log10( [H+] ).

What is the pH of water?

H+ is a hydrogen ion, 
which is a hydrogen 
atom that's lost its elec-
tron.  It is just a proton!

OH- is an oxygen atom 
bonded to a hydrogen 
atom, with one extra 
electron.  It's called a 
hydroxide ion.

In fact, hydrogen ions 
(protons) don't just 
float around the water; 
they glom onto water 
molecules to produce 
complicated structures.



GLV1  Moose and squirrel

What happens when we combine our logistic model of individual con-
strained population growth with competition for resources?  We study 
Moose and Squirrel, as a fictional example.  (Real examples will follow.)

Let M be the population of moose (in hundreds), and let S be the pop-
ulation of squirrels (in thousands).  If they did not interact with each 
other, their populations are modeled by separate equations.

	 S' = 3S - S2	 and	 M' = 2M - M2.

EX.  What do the different constants (2 and 3) reflect about moose and 
squirrels in this model?

For the rest of these exercises, we study the following model, in which 
moose-squirrel interactions have negative effects on both species.

			   M' = 2M - M2 - 0.5 MS.
			   S' = 3S - S2 - MS .

EX.  Contrast this to our model of sharks and tuna.  What are the most 
dramatic differences?

EX.  Assume there are no moose (M = 0).  Draw a phase portrait for 
squirrels, identifying the equilibrium numbers of squirrels.

EX.  Assume there are no squirrels (S = 0).  Draw a phase portrait for 
moose, identifying the equilibrium numbers of moose.

An unofficial image of 
Rocky the squirrel and 
Bullwinkle the Moose.
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GLV2  Moose and squirrel, continued
EX.  The squirrel population will not change when S' = 0.  The moose 
will not change when M' = 0.  Using some algebra (see the margin), 
draw the nullclines in Moose-Squirrel State Space below.  

Guide:  To graph the 
S-nullcline, solve S'=0.

Thus we have to solve
3S - MS - S2 = 0.

Factoring yields  
3S-MS-S2 = S(3-M-S).

Thus  S' = 0 when... 
S=0 or 3-M-S=0.

Plot S=0 and S = 3-M.

0

0

Number of moose (hundreds)
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EX.  On the plot above, highlight all equilibrium points.  These are the 
points at which both S' = 0 and M' = 0.

EX.  Now we will draw the vector field, showing how we expect the 
numbers of moose and squirrel to change, according to our model.  
Choose five starting points (M,S).  Choose points from all regions of 
the plot.  For each starting point (M,S), draw an arrow from (M,S) to 
(M+M', S+S'), indicating how the numbers of moose and squirrels will 
change.  We have given one example already on the plot above.

	 Example:  If M=1 and S=1, then M' = 0.5 and S' = 1.  
	 So we drew an arrow from (1, 1) to (1+0.5, 1+1).

EX.  Load the Generalized Lotka-Volterra Explorer, and enter the change 
equations.  What do you think happens to the populations of moose 
and squirrel in the long term, according to this model?



GLV3  Modeling interacting populations  (gerbils)
In the Western Negev desert, there are two species of wild gerbils:  
Gerbillus (andersoni) allenbyi and Gerbillus pyramidum.  Individuals of the 
species G. pyramidum are about twice as large as their G. allenbyi col-
leagues.  Both species forage for seeds at night and live in sand dunes.  

EX.  Declare state variables, and model these populations of gerbils 
with a pair of change equations.  Your model should incorporate gerbil 
reproduction and interaction as described above.  Use plausible units 
and parameters.

Unit of time:

State variables:

Change equations:

EX.  Explain your model of gerbil populations.  How did you choose 
the general form of your terms, and the specific parameters.  

Examples here are 
adapted and simplified 
from Chapter 5 of Go-
telli, A Primer of Ecology.

Gerbillus pyramidum, the 
Greater Egyptian Ger-
bil, image by Georges 
Cuvier, 1817.

Gerbillus andersoni 
allenbyi, or Anderson's 
Gerbil, from Hai-Bar 
Yotvata Nature Pre-
serve.
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GLV4  Trajectories in state space

EX.  Draw time series for the populations of G. pyramidum and G. allen-
byi, consistent with your model and approaching equilibrium.

EX.  Tell the story behind your time series.  What is happening to the 
two populations, and why?  Be creative, but your story must be consis-
tent with your model and explanation on the previous page.

EX.  Draw the trajectory in state space which matches your time series 
of gerbil populations.



GLV5  Modeling interacting populations (lice)
Lice, such as the head louse (Pediculus humanus capitis) and the body 
louse (Pediculus humanus humanus) thrive on the human body.  Head 
lice do not spread any diseases, and some have hypothesized that head 
lice are actually beneficial to humans by altering their immune system.  
Body lice, on the other hand, are implicated in the spread of disease 
such as typhus, by passing the bacteria Rickettsia prowazekii to their 
human hosts.  

EX.  Declare state variables, and model populations of head lice, body 
lice, and humans with three change equations.  Use plausible units and 
parameters.

Unit of time:

State variables:

Change equations:

EX.  Explain your model of human and louse populations.  How did 
you choose the general form of your terms and the coefficients.  

The head louse.  Scary, 
itchy, but harmless.

Image credit Des 
Helmore / Manaaki 
Whenua – Landcare 
Research.
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EX.  Draw three time series for the populations of head lice, body lice, 
and humans, consistent with your model. 

EX.  Tell the story behind your time series.  What is happening to the 
two populations, and why?  Be creative, but your story must be consis-
tent with your model and explanation on the previous page.

EX.*  According to the model you've chosen, what are the equilibrium 
points?  What do they mean in terms of the three populations and their 
interactions?

GLV6  Trajectories in state space
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GLV7  Exploration of nullclines and equilibria
Here we explore a very general model, which is meant to describe two 
populations in which...

1.  Each population, independently, has a fixed birth/death rate and 
possibly a carrying capacity.  Treating the populations separately, the 
system would exhibit exponential growth/decay or a logistic model.

2.  Interactions between the populations may be helpful to both (e.g., 
cooperation), helpful to one and harmful to the other (e.g., preda-
tor-prey), or harmful to both (e.g., competition).

The change equations for such a system are the following.

		  P' = αP - γP² + uPQ
		  Q' = βQ - δQ² + vPQ

These are called generalized Lotka-Volterra equations.

EX.  If the parameters u and v are both zero, describe the system, in 
terms of what we have learned earlier.

EX.  Suppose that both u and v are positive but both α and β are nega-
tive .  What does this mean about the two populations?

EX.  Go to the Generalized Lotka-Volterra Explorer.  Find values of the 
parameters with positive u and v, in which there is an attractive equi-
librium point with positive P and Q.  List your parameter values in the 
margin, and describe the dynamics in 1-2 sentences.  

My parameters:

α =_________ 

β =_________

γ = ________

δ = ________

u = ________

v = ________

(†)
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Paramecia are single-cell eukaryotic (the cell has a nucleus) organisms, 
that like to float around in ponds eating bacteria and algae.  In the 
early 20th century, the Russian scientist Gause carried out experiments 
on two species of paramecia:  P. aurelia and P. caudatem.  In his experi-
ments, he carefully bred each species in identical conditions -- first on 
their own, then sharing a dish.  Here we examine Gause's data with a 
generalized Lotka-Volterra model, marked (†) on the previous page.

Let P be the population of P. aurelia, and Q the population of P. cau-
datem.

EX.  Use the Logistic Growth Explorer and the top data table to estimate 
α, γ, β, δ.  To fit the logistic curve, enter the population data, and find 
parameters which minimize the "residual sum of squares."  Consider P 
and Q completely separately for this part!

	 α = ________________, γ = __________________

	 β = ________________, δ = __________________

EX.  Use the bottom data table (where species interact) and the General-
ized Lotka-Volterra Explorer to estimate the parameters u and v.  Can you 
find parameter values which roughly fit the data?  Hint:  try small neg-
ative values of u and v, turn on nullclines, and click to start trajectories.

	 u = ________________, v = _________________

EX.  When the two species of paramecia are bred on the same plate, 
what do you think is their relationship to each other?  Predator and 
prey?  Competition for resources?  Cooperation?  Justify your answer.

GLV8  Gause's Paramecia

Day P Q
2 14 10
3 34 10
4 56 11
5 94 21
6 189 56
7 266 104
8 330 137
9 416 165
10 507 194
11 580 217
12 610 199
13 513 201
14 593 182

Populations of parame-
cia, living separately.  
Adapted from Table 1 of 
P.H. Leslie, An Analysis 
of the Data for Some Ex-
periments Carried out by 
Gause with Populations of
the Protozoa,  in Bio-
metrika (1957).

Day P Q
2 10 10
3 21 11
4 58 29
5 202 50
6 163 88
7 221 102
8 293 124
9 236 93
10 303 80
11 302 66
12 340 83
13 387 55
14 335 67

Populations of para-
mecia, living together.  
Adapted from Table 3 of 
loc. cit.



Eq1  Equilibria in two dimensions:  Synthesis
On the left is a picture of one type of equilibri-
um point, in a system with two state variables.  
This image (from Figure 27 of Lotka's Physical 
Biology) displays three trajectories in state 
space, swirling towards an equilibrium point.

EX.  (Creative writing) Think of two quantities 
which may exhibit such trajectories.  Declare 
state variables with "Let..." sentences, to de-
scribe the system.

Let _____ be 

Let _____ be 

 

EX.  Draw time-series plots for both of your state variables, corresponding to one of the three 
trajectories in the image above.

EX.  Write a system of two change equations, with your chosen state 
variables, which exhibits these kinds of "spiraling-in" trajectories near 
an equilibrium point.  You may use the Generalized Lotka-Volterra Explor-
er to help find such change equations.
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Eq2  Equilibria in two dimensions:  Synthesis
EX.  On the left, reproduce another type of 
equilibrium point, choosing the image from 
one of Lotka's types A-J, shown on the open-
ing page of this Lab.  

EX.  (Creative writing) Think of two quantities 
which may exhibit these trajectories.  Declare 
state variables with "Let..." sentences to de-
scribe the system.

Let ____ be

Let ____ be 

EX.  Draw time-series plots for both of your state variables, corresponding to one of the trajecto-
ries in the image above.

Type ______

EX.  Write a system of two change equations, with your chosen state 
variables, which exhibits these kinds of trajectories near an equilibrium 
point.  



Figure 2 from On "relaxation-oscillations," by Balth.van der Poljun.D.Sc, in the London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of Science (1926).  Shown are two tra-
jectories that approach a stable limit cycle.  One trajectory comes from far away, around (-2,3), 
while the other comes from inside at (0,0).  Both trajectories approach the same limit cycle, a 
closed trajectory having a weird      -shaped structure.  Van der Pol's equations were used in the 
earliest electrical models of the heart.
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Laboratory 4
Oscillation

Equilibrium is a theoretical state.  Real systems are always in motion.  
Well-regulated systems are not at rest, but rather they oscillate around 
the equilibrium in a predictable manner.  In mathematics, the first 
oscillators we see are described by sinusoidal functions like sine and 
cosine.  These appear often in physical sciences, but are less often seen 
in the biological sciences.  Biological oscillation, like circadian rhythms, 
heartbeats, hormonal fluctuations, are far more complicated.

In this lab, we will see three sorts of oscillation.

1.  The simple harmonic oscillator (SHO) is useful for understanding 
the simplest oscillating systems in physical science.  A key example will 
be the oscillation of bonds in molecules, which is crucial for spectrosco-
py.  The SHO also provides a vocabulary to describe oscillation.
  
2.  Oscillations arise from limit cycles, like the van der Pol oscillator 
shown on the opposite page.  Other examples include the Holling-Tan-
ner model in ecology, modeling sharks and tuna... when the sharks 
have limited appetite.  Another example is given by oscillations in 
glycolysis, the most important metabolic process in the cell.

3.  Oscillations arise from time delay and sharp negative feedback; 
nothing happens in an instant.  In contrast to change equations from 
previous chapters, where one quantity immediately affects how anoth-
er changes, real systems exhibit time delays.  These delays can lead to 
regular patterns of oscillation, and sometimes to chaos!

EX.  Think of a quantity, related to living organisms, that oscillates.  
Briefly describe this oscillating system, and how you think the oscilla-
tions are maintained.

Van der Pol considers 
the system of change 
equations,

X' = Y
Y' = ε(1-X2)Y - X

Trajectories with the 
parameter ε=1 are 
shown on the opposite 
page.  A time-series is 
given below (from Fig. 
4 of loc. cit.), showing 
the formation of oscilla-
tions.



Osc1  The "How" of Oscillation
Let X be a single (positive) quantity that changes over time.  We be-
gin by asking how X might achieve an oscillating state.  We have only 
touched the surface of change equations; perhaps there is some new 
change equation, X' = F(X), whose trajectories oscillate?

To understand the trajectories, we might begin by drawing a phase 
portrait, like the one below.  

Recall what this phase portrait displays.  The dots indicate the equi-
librium points when X' = F(X) = 0.  The arrows point to the right when 
F(X) > 0, and the arrows point to the left when F(X) < 0.

A trajectory in such a system must follow the arrows.  If a trajectory 
ever hits an equilibrium point, it must stop moving.

EX.  Explain, in 1-2 sentences, why such a system can never reverse di-
rection.  In other words, if X' = F(X), then the quantity X(t) can increase 
or decrease, but it can never do one then the other.

EX.   It is cold outside, and your room is equipped with a simple on/
off heater.  Whenever the temperature drops below 65 degrees, you feel 
cold and turn on the heater.  When the temperature is above 75 degrees, 
you feel hot and you turn off the heater.  Draw a time-series plot of the 
temperature of your room.

EX.  Can the above situation be described by a single change equation?  
Why or why not?
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Osc2  Momentum and Force
A single change equation X' = F(X) cannot produce oscillations.  On the 
other hand we have seen that a pair of change equations, like sharks 
and tuna, can produce oscillations in both quantities.  We might say 
that a quantity cannot oscillate on its own.

In physics, this problem is resolved by a radical idea.  In addition to 
tracking the traditional state of a system (a state variable X), one also 
tracks the momentum of the system (a state variable "P" for imPetus).  
If one works with the simplest physical system, a moving ball, then X 
would represent the position of the ball, and P would represent the 
velocity of the ball multiplied by its mass.  This P reflects the oomph 
of the ball, called the momentum.

The position X and momentum P are then forever linked by a simple 
looking change equation:

	 m X' = P, or equivalently X' = u P 

Here m is the mass of the ball, and u = 1/m is its reciprocal.

If the change in position X' is described by P, how does momentum 
change?  The answer is given by Newton's Second Law, which states:

	 P' = [The force applied to the ball]

In other words, force determines the change to momentum.  And mo-
mentum (divided by mass) determines the change in position.  In this 
Newtonian model, force does not directly change the position.  That is 
the big first insight of Newtonian physics.

EX.  A 3 kilogram ball is falling from a height of 10 meters.  Its current 
velocity is 2 m/s downwards.  The force of gravity is equal to 30 kg m/
s2.  Using the discrete time model below, fill out the table to see what 
happens to the position and velocity of the ball in the subsequent 0.3 
seconds.  

	 ΔX/Δt = -u P   and   ΔP/Δt = 30.

Note that the initial momentum is 6 kg m/s, since the 3 kg ball is fall-
ing at 2 m/s.  Our time interval is Δt = 0.1 second.

Newton's Law in orig-
inal Latin:  Mutationem 
motus proportionalem esse 
vi motrici impressae

Translated:  A change in 
momentum is proportional 
to the motive force applied.

3 kg

10
 m

et
er

s

2 
m

/s

The above system 
shows a ball with posi-
tion (height) X = 10 m, 
mass 3kg and velocity 2 
m/s (downwards), and 
momentum:

P = 6 kg m/s.

time X (meters) P (kg m/s) ΔX ΔP

0 10 6
0.1
0.2
0.3

6 
kg

 m
/s



SHO1  Introducing the Simple Harmonic Oscillator
The simple harmonic oscillator refers to any model with two state 
variables, say X and P, two positive parameters u and k, and the fol-
lowing innocent-looking change equations.

	 X' = dX/dt = uP   and	  P' = dP/dt = - kX.

The quantity X typically represents the position of some thing.  The 
quantity P then represents its momentum, and u = 1/m is the recip-
rocal of the mass.  And the force, which equals P' by Newton's law, is 
proportional to -X.  This means that the force is a restoring force.  If X 
is positive, the force -kX is negative, pulling X towards 0.  And if X is 
negative, the force -kX is positive, pushing X towards 0.

EX.  Consider the following discrete-time simple harmonic oscillator, 
with parameters u=1 and k=1.

	 ΔX/Δt = P	 and	 ΔP/Δt = -X.

Suppose you begin at the state X=1 and P=0, when t=0.  Using time 
steps Δt=1, find the states at t=1, t=2, and t=3.  Fill out the table below.

time X P ΔX ΔP

0 1 0

1

2

3

EX.  Carry out the same process, but using time interval Δt=0.5.  The re-
sulting table should have 7 rows (t=0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0).  Sketch 
the trajectory in state space below.  

We choose these letters 
X, P, u, k, because they 
are commonly used in 
physics.

XP

+

-

X=0

The spring pulls/push-
es the ball towards 0.

The harmonic oscillator 
is an example of a nega-
tive feedback loop.  The 
position negatively in-
fluences the momentum 
through the restoring 
force.
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SHO2  Exploring the Simple Harmonic Oscillator
Using a discrete-time approximation, you should find that the change 
equations ΔX/Δt = P and ΔP/Δt = -X yield a spiraling trajectory.  In 
fact this spirals out less and less when Δt gets smaller.  To see what 
happens when Δt becomes the infinitesimal differential dt, load the 
Simple Harmonic Oscillator simulator.  This simulates the equations:

X' = uP   and P' = -kX

EX.  Find the equilibrium point of the simple harmonic oscillator, and 
explain why it is the only equilibrium point.

The only equilibrium point of the SHO is at X = ______, P = _______, 
because...

EX.  Experiment with trajectories in the simulator.  Describe the tra-
jectories when u=1 and k=1.  Then describe the effect of changing the 
parameters u and k.  What shapes do you find, and how do the param-
eters affect the shapes?  Draw a picture to accompany your description.

EX.  The trajectories for the simple harmonic oscillator are closed, 
meaning they follow a path that leads back to where they start.  The 
period is how much time it takes to complete a cycle.  Explore to see 
how the period may depend on the starting point and the parameters 
u and k.  Describe your findings qualitatively.  (On the next page, you 
will collect data more formally).



SHO3  Anatomy of the Simple Harmonic Oscillator
In the simple harmonic oscillator, two quantities called X and P, 
change according to the equations

	 X' = dX/dt = uP   and   P' = dP/dt = - kX.

The resulting trajectories are elliptical.  The period of oscillation, re-
markably, does not depend on the starting point.  Rather, the period is 
given formulaically from the parameters u and k.

EX.  Fix u, and try diferent values of k.  Then fix k and try different 
values of u.  Collecting data in this way, and using the Linear Regression 
with Log Scaling Tool, develop of a formula which relates the period of 
oscillation to u and k.  Hint:  When u = 1 and k = 1, the period is 2π.

	 Period = 2π ______________

If you start your trajectory at X=0, P=1, with the parameters u=1 and 
k=1, then the trajectory traces a unit circle at velocity 1.  The time-series 
are then described by the cosine and sine functions.

	 X = sin(t)	 and	 P = cos(t)

t=0

The trajectory in state 
space is circular when 
u=1 and k=1.  It takes 
2π, about 6.28, units of 
time to go around the 
circle.  The amplitude is 
the radius of the circle.

Note that X is on the 
horizontal and P is on 
the vertical axis here.

Time
P(t) = cos(t)

X(t) = sin(t)

When the starting point is changed, the circle can become larger and 
smaller.  This does not change the period!  But it does change the am-
plitude.  When u and k are changed, the circle becomes an ellipse; the 
two waves have different amplitudes, but the same period.

EX.  Draw the time series, when u=8 and k=2, with starting point (1,0).  
Label your plot to show the period and the amplitudes of the X and P 
oscillations.  Sketch the trajectory in state space in the margin.

The period of the oscillation

A
m

pl
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SHO4  Sine and cosine
The simplest harmonic oscillator has the form, X' = P   and   P' = -X.  
When X(0) = 0 and P(0) = 1, the time series are given by functions

	 X = sin(t)   and   P = cos(t).

EX.  Taking these facts as a given, what is the derivative of sin(t)?  What 
is the derivative of cos(t)?

EX.  Let X(t) = a sin(bt).  Using Desmos, how do the parameters a and b 
relate to the period and amplitude of oscillation?

EX.  If X(t) = a sin(bt), then what is X'(t)?  Reason geometrically; how do 
the parameters a and b affect the graph, and its slopes? 

EX.  A typical human's body temperature fluctuates during the day, 
with average 36.5°C, around noon and midnight, maximum 37°C and 
minimum 36°C.  Let B(t) be the body temperature at time t, where t is 
measured in hours and t=0 represents midnight.  Model the function 
B(t) by an appropriate sinusoidal function.

EX.  A damped harmonic oscillator has time-series described by the 
function X(t) = sin(t) e-t and P(t) = cos(t) e-t.  Sketch the resulting time-se-
ries and trajectory in state space here, starting at t=0.   
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Osc3  Units for describing oscillation
Suppose that X is a quantity that oscillates.  This means that, the long-
term behavior of X involves a repeating pattern of increasing and 
decreasing.  We have already met the period of oscillation—the length 
of time to complete a full cycle.

The frequency of oscillation is how many oscillations occur in a given 
unit of time.  For example, if the period of oscillation is 3 months, then 
the frequency of oscillation is 4 per year.

EX.  Convert the following periods to frequencies.

The semidiurnal tide has a period of 12 hours.  The frequency of this 
tide is _______ per day.

The E. Coli cell cycle has a period of 30 minutes.  The frequency of this 
cell cycle is _____ per hour.

The "ultradian" oscillation of insulin has a period of 60 minutes.  The 
frequency of this oscillation is _____ per day.

A typical unit of frequency is the Hertz, abbreviated Hz.  The unit "Hz" 
means "per second."  So an oscillation frequency of 20 Hz means that 
the oscillation occurs 20 times each second.

EX.  The refresh rate of your computer monitor is probably 60 Hz.  
What is the period of this oscillation, in milliseconds?

EX.  The sound of a "middle C" on a modern instrument consists of air 
pressure waves which oscillate with a 3.83 ms (millisecond) period.  
When a middle C is played, how many times does a string vibrate each 
second?  In other words, what is the frequency, in Hz?  

EX.  Light consists of vibrations in the electromagnetic field.  A red 
light (e.g., from a red laser pointer) represents oscillations at a frequen-
cy of 4.3 · 1014 Hz.  What is the period of the vibration?

  

1 millisecond, or 1 ms 
equals 1/1000, or 10-3 
seconds.
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Osc4  Light
Light is strange stuff. Einstein noted that light behaves like little par-
ticles (photons), each traveling at a fixed speed c called the speed of 
light.  This speed of light doesn't change if you shine a flashlight from 
a speeding train, or launch your flashlight into space, or choose a red or 
blue light.  This speed of light is a constant, a really big constant, which 
we can experimentally measure.

	 c = 3 × 108 m/s ≈ 300 million meters per second.

At the same time, light behaves like a wave—it oscillates.  Every pho-
ton of light has a frequency f, describing how fast it oscillates.  Every 
photon also has a wavelength λ, because light waves have a length in 
space.  The frequency and wavelength are linked by the equation

	 f λ = c

Note that the units of speed are m/s (meters per second).  The units of 
frequency are Hz ("per second").  The units of wavelength are meters.  

EX.  A red laser emits light with frequency 4.3 · 1014 Hz.  What is its 
wavelength?  Express your answer in nanometers (1 nm = 10-9 m).

		  λ= _______________ nm

EX.  A blue laser emits light with wavelength 450 nm.  What is its fre-
quency?  

EX.  Fill out the following table, with ranges of frequencies and wave-
lengths for commonly occuring photons.  Look these up and briefly 
describe your source in the margin.

Name of light Wavelengths Frequencies
X-ray, Gamma-ray
Ultraviolet
Visible light 380 - 700 nm
Infrared
Microwave
Radio (WiFi, etc.)

 
EX.  Molecules behave somewhat like balls (atoms) attached by springs 
(covalent bonds).  As such, a water molecule can vibrate in a few ways, 
with frequencies 1.126×1014, 1.097×1014, and 4.782×1013 Hz. Light with 
those frequencies is easily absorbed by water molecules, making them 
vibrate.  What sort of light (according to the table above) is absorbed by 
water?  (This is why water vapor is a greenhouse gas!)  

Here we're talking 
about the speed of 
light in a vacuum, i.e., 
when there's nothing 
for the light to "bump" 
into.  The speed of light 
in water is about 25% 
slower.  Air slows down 
light by about 0.03%. 

λ is the lowercase Greek 
letter lambda.  Draw it 
below for practice.

λ

O

H H

In water, the H-O bond 
lengths can vibrate, and 
the bond angle (about 
104.5 at equilibrium) 
can vibrate too.

Information source for 
table:



Gly1  Glycolysis
Glycolysis is a series of chemical reactions that is central to the metab-
olism of cells.  It proceeds in 10 steps, beginning with the now-familiar 
monosaccharide glucose C6H12O6, and ending with two molecules of 
pyruvate C3H4O3.  Each step requires an enzyme, e.g., hexokinase to 
get from glucose to G6P.  Some steps consume energy and some release 
energy.  More is released than consumed, and the crucial byproduct 
is that glycolysis produces usable energy; this energy is stored in the 
molecules ATP and NADH.  In cells with mitochondria, NADH enables 
mitochondria to generate even more ATP.  The molecule ATP is then 
used for all sorts of cellular processes, from the firing of our neurons 
and whirling of bacterial flagella.

To summarize, glycolysis is the series of chemical reactions which al-
lows glucose to serve as the fuel for cells.

We consider glycolysis here, because it is the most important meta-
bolic process in the cell, and because from single-cell prokaryotes like 
E. Coli, and eukaryotes like yeast,  to human cells (e.g., β-cells in the 
pancreas, muscle cells in the heart), glycolysis oscillates.

1 molecule Glucose

1 molecule G6P

1 molecule F6P

1 molecule FBP

1 molecule each of 
GADP, DHAP

2 molecules GADP

2 molecules BPG

2 molecules 3PG

2 molecules 2PG

2 molecules PEP

2 molecules Pyruvate

1

2

3

4

5

6

7

8

9

10

For oscillation in glycolysis, see Dynamic fluctuations in a bacterial metabolic network, by Bi et al., in Na-
ture Communications (2023) for E. Coli.  There are many works for yeast, such as Sustained oscillations in 
free-energy state and hexose phosphates in yeast by Richard et al., Yeast (1996).  Richard et al. is the source for 
the above figure.  For humans, see e.g, Metabolic oscillations in beta-cells by Kennedy et al., Diabetes (2002).

10 steps of glycolysis

On the right is Figure 1 from Richard et al., 
where the authors measure the concentra-
tion of G6P, F6P, FBP, and DHAP over time, 
in yeast (Saccharomyces cerevisiae).  These are 
molecules that appear in the first 4 steps of 
glycolysis.    

EX.  What do the marks (squares, diamonds, 
triangles, circles) mean?  What do you think 
the wavy lines are?

EX.  Estimate the period and frequency of the 
oscillations of G6P shown in the figure.

	 Period  = ________ seconds

	 Frequency = ____________ per minute
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Gly2  Oscillation and phase shift
EX.  Compare and contrast the oscillations of G6P, F6P, and FBP in the 
figure.

EX.  A general sinusoidal function has the form

	
This function has three parameters, called A, p, and φ.  Use Desmos to 
explore these parameters.  You have already seen what A and p repre-
sent.  The parameter φ is called the phase shift.  Describe what all these 
parameters mean for the graph of S(t).

	 A is the ...

	 p is the ...

	 φ is the ...

  
EX.  Considering the step-by-step nature of glycolysis, and the figure, 
why might you see differences in phase shift when looking at G6P, F6P, 
and FBP?   

φ is the lowercase 
Greek letter phi.  Draw 
it below for practice.

φ



One source of oscillations can be found in Step 3 of glycolysis, where 
F6P is converted to FBP.  The chemical reaction requires an enzyme 
PFK activated by two molecules of ADP.  It also requires a molecule of 
ATP, the energy source of the cell.  So the input for Step 3 is really...

	 1 F6P + 1 PFK + 2 ADP + 1 ATP.

The output of Step 3 is also more complicated.  The F6P is indeed con-
verted to FBP.  The enzyme PFK and its 2 ADP activators are not "used 
up" and so they wash out unchanged.  But the energy source ATP is 
used up, leaving a molecule of ADP.  So the output of Step 3 is really...

	 1 FBP + 1 PFK + 3 ADP.

To complete the construction of the model, we make three more as-
sumptions.  First, that there is plenty of PFK and ATP floating around 
in the cellular environment.  Second, that ADP is removed in a first-or-
der fashion (exponential decay).  Third, that F6P is produced at a 
steady rate by Steps 1 and 2 of Glycolysis.  

Our model comes from the chemical reaction:  1 F6P + 2 ADP → 3 ADP, 
since we ignore the PFK which is unchanged.

	
d[F6P]

dt  = v - c [F6P] [ADP]2.

	 d[ADP]
dt  = c [F6P] [ADP]2 - k [ADP]

 

EX.  What is the meaning of the term [F6P] [ADP]2?  Look at the input 
to Step 3 to find the interaction.

EX.  What do the terms v and -k[ADP] mean?  Which assumptions do 
they reflect about our model?    

Gly3  Glycolysis:  source of oscillations
1 molecule Glucose

1 molecule G6P

1 molecule F6P

1 molecule FBP

1 molecule each of 
GADP, DHAP

2 molecules GADP

2 molecules BPG

2 molecules 3PG

2 molecules 2PG

2 molecules PEP

2 molecules Pyruvate

1

2

3

4

5

6

7

8

9

10

10 steps of glycolysis
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Gly4  Glycolysis:  Higgins-Sel'kov model
Let F be the concentration of F6P (fructose-6-phosphate) molecules in 
our cell.  Let A be the concentration of ADP (adenosine diphosphate) 
molecules in our cell.  Our previous change equations can be written 
more compactly in the form

	 F' = v - c FA2   and   A' = c FA2 - kA

EX.  The A-nullcline occurs when c FA2 - kA = 0.  Complete the follow-
ing sentence with an algebraic expression.

	 A' = 0 when A = 0 or when F = __________

EX.  If the parameters v,c,k are all equal to 1, there is a unique equilibri-
um point.  What is this point?

	 Equilibrium occurs when A = _____ and F = _______

EX.  Load the Higgins-Selkov simulator to explore trajectories and pa-
rameters.  Draw three trajectories you see for each of the parameter 
choices below.  Compute the equilibrium point in both cases.

[ADP]

[F
6P

]

[ADP]

[F
6P

]

Parameters:  v=1, c=0.9, k=1

Equilibrium point: ______________

Parameters:  v=1, c=1.1, k=1

Equilibrium point: ______________

EX.  Based on these explorations, compare the oscillations you expect 
to see if you measure [F6P] and [ADP].  Their period?  Phase shift?  



HT1  Holling-Tanner Model
We return now to predator-prey systems, like our familiar sharks and 
tuna.  The original Lotka-Volterra equations were the following.

S' = -δS + pST   and   T' = βT - qST

Rather than using simple exponential birth/death rates, we learned 
to incorporate a "carrying capacity" in a logistic model.  Putting this 
together, we get the generalized Lotka-Volterra equations below.

	 S' = α S (1 - S/k) + pST   and   T' = βT (1 - T/m) - qST

One criticism of this model is that the sharks seem to have infinite 
appetite for tuna.  No matter how large the number of tuna, the sharks 
seem to chomp them up.  To fix this, the rate of tuna consumption 
should reflect the following:

It should be proportional to the number of sharks.  For example, twice 
as many sharks should yield twice as many eaten tuna.  So the rate of 
tuna consumption should look like

	 [Rate of tuna-eating per shark] · [Number of sharks]

The rate of tuna-eating per shark (1) should be zero if there are zero 
tuna; (2) it should grow with the number of tuna, but (3) it should 
reach saturation.  Each shark has a maximum appetite for tuna.

EX.  Let A(T) be the rate of tuna-eating per shark.  Draw a plausible 
graph of A(T), with T on the horizontal axis, based on the model as-
sumptions (1) and (2) and (3) above.

Here we are using 
derivatives (continuous 
model) S' and T', while 
in Lab #1 we used the 
discrete time model 
with rates of change 
ΔS/Δt and ΔT/Δt.

To graph with parame-
ters, and restricting the 
domain, type what's 
below into Desmos.

 A model of A(T) can be given by a Hill function:  A(T) = c Td

Td+h

EX.  Use Desmos to explore this function, where c and d and h are 
positive parameters (with d ≥ 1).  Which parameter reflects the shark 
appetite, and how?

Number of tuna available (T)

Ra
te

 o
f 

tu
na

 e
at

in
g 

pe
r s

ha
rk
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HT2  Completing the Holling-Tanner model
A Hill function can be used to better model the rate at which tuna are 
eaten, when sharks have limited appetite.  The new change equation 
for tuna is given by

	 T' = βT (1 - T/m) - A(T)·S = βT (1 - T/m) - c ST
h+T  

What about the sharks?  Another criticism of Lotka-Volterra is that eat-
ing tuna does not directly increase the birth rate of sharks.  Tuna help 
feed the sharks, for sure, but one would not expect a direct proportion-
ality between tuna-eaten and sharks-born.  

A good answer to this criticism is found in the logistic model we use 
for the shark population, S' = α S (1 - S/k).  Here k denotes the "carry-
ing capacity," which is the maximum amount of sharks the environ-
ment can support.  Here, the environment is full of tuna!  The carrying 
capacity is directly proportional to the number of tuna.  If we have 
twice as many tuna, the ocean can support twice as many sharks.  So 
we should have k = q T, for some constant of proportionality q.  Putting 
this together, we have

	 S' = α S (1 - S/qT)       (logistic model with carrying capacity qT)

We do not need an interaction term pST any more!  The tuna-effect on 
sharks is built in, by incorporating tuna in the carrying capacity.

The resulting pair of change equations is the Holling-Tanner model of 
predator-prey populations.

	 T' = βT (1 - T/m) - c ST
h+T    and   S' = α S (1 - S/qT).

EX.  In this model, what do the parameters α, β, m, c, and q mean? 

We assume d=1 in our 
Hill function, just to 
keep things a bit simple.  



HT3  Holling-Tanner model:  dynamics
Now we explore the dynamics of the Holling-Tanner model

	 T' = βT (1 - T/m) - c ST
h+T    and   S' = α S (1 - S/qT).

EX.  Describe the S-nullcline, as a pair of lines in shark-tuna space.

	 S' = 0 when S = 0 or S = _______________

EX.  (Challenge!)  Describe the T-nullcline in shark-tuna space.

	
	 T' = 0 when T = 0 or S = ____ + ______________ T + ________ T2

Hint:  Factoring yields T' = T ( β - βT
m  - c S

h+T  )

Now load the Holling-Tanner Simulator.  This will explore the shark and 
tuna population in our new model.  The default parameters are 

	 α = 0.1, β = 1.0, m = 7.0, q = 1.0, h = 1.0, c = 0.5.

EX.  Note that β is 10 times larger than α.  What does this mean, in 
terms of our assumptions about sharks and tuna?

EX.  Adjust the parameter c, with values between c=0.5 and c=1.2.  For 
which values of c do you find a stable spiral equilibrium point?  For 
which values of c do you find an unstable spiral with a limit cycle?  
Answer these questions and provide two figures showing the dynam-
ics for two values of c to support your answers.

Fill in the blanks with 
algebraic expression 
involving only the pa-
rameters.

S

T

S

T



HT4  Modeling challenge -- three species
Consider an ecological system, with three populations:  the cyanobac-
teria, the green algae, and the filter-feeding fish.  Let C be the biomass 
of cyanobacteria, G the biomass of green algae, and F the number of 
filter-feeding fish.  This ecosystem has the following properties.

1.  The filter-feeding fish eat both cyanobacteria and green algae.  They 
have a limited appetite, only opening their mouths when hungry. 

2.  The cyanobacteria and green algae grow in a logistic manner, and 
are in competition with each other.  The cyanobacteria would typically 
outcompete the green algae, if their biomass were equal.  

EX.  Create a system of three change equations which plausibly models 
the three populations, consistent with what is written above.

	 C' = 

	 G' = 

	 F' =   

EX.  Do you think that adding filter-feeding fish is a good strategy for 
controlling cyanobacteria and green algae?  How might this answer 
depend on having both cyanobacteria and green algae present rather 
than just one of these species?  Explain your answer

  

  

Filter-feeders like 
bighead carp (Hypoph-
thalmichthys nobilis) use 
gill rakers to filter out 
nutritious stuff from the 
water, eating as they 
swim.  

Cyanobacteria used 
to be called blue-green 
algae.  But they are 
bacteria, which are 
cells without nuclei 
(prokaryotes).  Nowa-
days, the term algae is 
reserved for cells with 
nuclei (eukaryotes).

This problem is loosely 
based on Zhuang et al., 
Population Interaction 
Dynamics Analysis of an 
Algae-Fish System, in 
Applied Mathematics 
(2022).

111



Osc5  Oscillation with two variable systems:  recap
We have seen two sources of oscillation so far, and both require two 
(or more!) state variables.  One source of oscillation was found in the 
simple harmonic oscillator, which led to "neutral" circular or elliptical 
trajectories lie those in the margin.  

The second source of oscillation we have seen is the limit cycle, found 
in our glycolysis model and the Holling-Tanner predator-prey model.  
Limit cycles are closed trajectories. If a trajectory starts a bit inside a 
stable limit cycle, it will spiral outwards and soon approximate the 
limit cycle.  If a trajectory starts a bit outside the stable limit cycle, it 
will spiral inwards, and again it will soon approximate the limit cycle. 

Circular trajectories 
arise from change equa-
tions like:

X' = P, P' = -X

A slight change, like 

X' = P, P' = -X - 0.01P

yields a spiraling trajec-
tory, where oscillations 
decay.

The Poincare-Bendixson Theorem states that bounded trajectories for 
two state variables have one of three flavors

1.  The trajectory gets closer and closer to an equilibrium point. 

2.  The trajectory is closed, meaning that it goes around and around in a 
perfectly repeating manner.

3.  The trajectory gets closer and closer to a limit cycle.

EX.  Explain why a trajectory for two state variables cannot cross itself, 
e.g., you will never find a figure-8 shaped trajectory.  Hint:  where 
would the "change vector" point, if the trajectory crosses itself?

Image of limit cycle in van der Pol 
oscillator  by Roberto Zanasi, repro-
duced under Creative Commons 
Attribution 2.5 License

Closed trajectories are 
curves which return to 
the point at which they 
begin.

Bounded trajectories 
are curves which can 
"fit in a box."  More 
formally, there is some 
number D for which 
the trajectory never 
ventures farther than 
D units from where it 
began.



113

Osc6  Parameter variation:  the FitzHugh-Nagumo model
In a neuron, like most cells, there is a voltage difference between the 
inside and outside of the cell, known as the membrane potential.  
During a neural spike, the membrane potential of the neuron rapidly 
rises.  The membrane potential is controlled by ion channels, allowing 
the travel of sodium and potassium ions through the cell membrane.  

In the FitzHugh-Nagumo model, we use one state variable X for mem-
brane potential, and one state variable Y to represent the state of the 
"recovery" ion channels.  The change equations are below.

	 X' = X - X3/3 - Y + z   and   Y' = u (X + a - bY).

When a=0, b=0, and z=0, this is known as the van der Pol oscillator.  
Load the FitzHugh Nagumo Neuron Simulator for what follows. 
.
EX.  How do the parameters a and b affect the nullclines?

	 The parameter a controls ...

	 The parameter b controls ...

EX.  The parameter u does not affect the nullclines.  But how does 
the parameter u affect the shape of the neural spikes (the shape of the 
time-series for the membrane potential X)?  

EX.  Choose either the parameter a or b.  Starting with the van der Pol 
oscillator, adjust your parameter until the behavior of the trajectories 
changes significantly.  At what values of the parameter do you find a  
limit cycle?

The FitzHugh-Nagumo 
model (1961 and 1962) 
simplifies the earlier 
Hodgkin-Huxley model 
(1952), by considering 
only two state variables 
rather than four.  The 
Hodgkin-Huxley more 
closely models the 
neuron as an electrical 
circuit.

Inside 
neuron

Outside 
neuron

70 mV cell

1.5 V battery

In resting state, a typi-
cal membrane potential 
is -70 mV (milliVolts), 
and it peaks around 
+40 mV. during a spike. 



TD1  Time delay:  a new source of oscillation
A professional driver might have a 200ms (0.2 second) reaction time.  If 
they are driving along a straight road, and they start drifting right, they 
will turn their steering wheel left to correct.  And if they drift left, they 
will turn their steering wheel right.  The farther they see themselves 
drifting off, the sharper they will correct.  

This scenario can be modeled by the following.  Let X(t) be the location 
of the car in the lane at time t, where X = 0 means the car is in the center 
of the lane.  If X = 1, the car has drifted outside the lane to the right.  If 
X = -1, the car has drifted outside the lane to the right.

X = 0

X = -1

X = 1

🏎

The driver's steering may be modeled by the following:

	 ΔX/Δt = -X(t - 0.2) meters per sec.

The right hand side reflects a time delay.  The expression X(t - 0.2) 
means "The location 200ms before time t."  For example, if the car starts 
drifting to the right, at a rate of 1m/s, then we would find the follow-
ing table.

Time (sec) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Location 0 0.1 0.2 0.2 0.19 0.17 0.15 0.131 0.114
Δt (sec) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
ΔX/Δt 0.1 0.1 0 -0.1 -0.2 -0.2 -0.19 -0.17 -0.15

Drift phase...
Before reaction Reaction delayed 

by 0.2 sec

EX.  Fill out the next two columns of the table below, to indicate the 
position of the car when t=0.9 and t=1.0

When we write X(t-0.2), 
we are evaluating a 
function X at the input 
t-0.2.  This is not X 
times (t-0.2).



Now you will use a spreadsheet to explore what hap-
pens in the longer term, and with different parameters.

EX.  Create a spreadsheet to explore the first 3 sec-
onds, following the instructions in the margin.  Plot the 
time-series for X(t) and sketch it below.

EX.  Why is the formula "=B2+(C2*D2)" used in cell 
B3?  Why is the formula "= -B2" used in cell D4?  Re-
late these to the change equation and time delay.

EX.  Now try changing the reaction time from 200ms to 
1 second, using a 1 second drift period.  Then try sharp 
negative feedback.  The two new change equations 
would be:
	
	 ΔX/Δt = -X(t - 1.0) and  ΔX/Δt = -5X(t - 0.2)

Sketch the resulting time series below for these scenar-
ios.  Try to find parameters (reaction time, feedback 
sharpness) which yield oscillation; if you find them, plot 
the time series and record the parameters.

A spreadsheet as above can help.  En-
ter  rows 1 and 2 manually.  

Copy-paste the cell C2 into C3, C4, 
etc., so the Δt is 0.1 throughout.

Enter the formula "= A2+C2" into A3, 
and copy-paste to cells A4, A5, etc., 
for the time counter.  Note the formu-
la will adjust automatically, so A4 = 
A3+C3, and A5=A4+C4, etc.  This will 
fill out your time table.

Enter 0.1 in D2 and D3 for the drift 
phase.  Enter "=B2+(C2*D2)" into 
B3.  Enter "= -B2" into D4.  Copy-paste 
these formulas to fill out columns B 
and D to get the full time series data.

Then create a time-series plot from the 
data in column B.  
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TD2  Time delay and steep negative feedback



TD3  Time-delay in exponential models
EX.  The old familiar change equation ΔP/Δt = P models a population 
that doubles during each unit of time Δt.  Now, consider a population 
that doubles with a time delay, ΔP/Δt = P(t - 2).  If P(0) = 1 and P(1) = 1 
and P(2) = 1, make a table of P(t) for t = 1, ..., 10.

EX.  Load the Linear Regression with Log Scaling tool and enter your data 
for P(1), P(2),..., P(10).  Use this to find a good approximation to P(t) by 
an exponential function P(t) = C ekt.

The above exercises show that a time-delayed exponential growth is 
still very well modeled by standard exponential growth, though the 
particular parameters depend on the time delay.

EX.  Consider the change equation P' = 100 - P.  Using the techniques 
from Lab #3, draw a phase portrait and time-series if P(0) = 10.  

EX.  Consider the equation with time delay:  ΔP/Δt = 100 - P(t - 1).  
What happens if P(0) = 10 and P(1) = 20 in this system?  What if P(0) = 
50 and P(1) = 70?  Experiment with starting values of P(0) and P(1) and 
describe what you find for the long-term behavior.  

  
 
	

A spreadsheet would 
be very helpful here, 
setting up columns for 
P, t, DP, Dt as on the 
previous page.
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TD4  Time-delay in a logistic model.

The graph above is tak-
en from Figure I of Da-
vid M. Pratt, Analysis of 
Population Development 
in Daphnia at Different 
Temperatures, Biological 
Bulletin (1943).  The 
quote here is from the 
same article (p.136).

In his experiments with populations of water fleas (Daphnia magna), 
Pratt found oscillations over time, with similar features.  Many of his 
populations rose and then crashed to extinction; but those that sur-
vived the first decline rose again about 40 days later, declined, rose 
again, declined again, etc.  Carefully controlling the conditions, Pratt 
excluded an external cause of oscillation like predators or prey for his 
fleas.  Rather, he speculates, 

"The cause of oscillation is the delay in the action of population 
density upon mortality and the reproductive rate... the ultimate 
source of oscillation is a lack of synchronization of a physiological 
state with the forces that provoke it."

A few years later, Hutchinson modeled this time-delay, with specific 
reference to Pratt's work, by  the change equation

	 P' = β ·P(t) · (1 - P(t - τ)/k).

The parameter β is the net birth rate under ideal conditions, k the car-
rying capacity, and τ the time delay.  The birth rate is not affected by 
crowding immediately.  Rather, if the population exceeds the carrying 
capacity at some moment, the negative effect on the population will 
occur τ units of time later.  This is logistic growth with time delay.

EX.  Load the Hutchinson time-delay simulator.  Using a birth rate β=0.02 
and carrying capacity k=100, sketch the time series for four values of τ 
between 10 and 100.

   

EX.  Experiment with birth rate and time delay.  For each birth rate, 
there is a critical value τc ; if the time delay is less than τc , then popu-
lation will approach equilibrium.  If the time delay is greater than τc , 
oscillations will sustain in the long term.  Tabulate the values of τc  at 
different birth rates.  Use this to guess a formula relating τc to β.

	 τc  = _______________________

τ is the lowercase Greek 
letter tau.  Draw it be-
low for practice.

τ

β τc



MT1  Muscle tremor
Motor neurons provide an electrical signal to muscles, making them 
contract.  When muscles stretch, sensory neurons send a message to 
the motor neurons to contract.  If you attempt to hold a heavy weight 
in a stationary position, gravity will pull your muscles to stretch, and 
your neurons will send a signal to your muscles to contract, and a 
delicate balance is needed to hold the weight stationary.  This can be set 
up experimentally, as in the figure in the margin, by having a person 
attempt to hold a weight stationary while sitting in a chair with elbow 
bent 90 degrees.  

Such experiments were conducted, recording 
oscillations as the person's muscles became 
tired.  In one experiment, a spring was placed 
on the chain holding the weight, enhancing 
the oscillations.  In another experiment, the 
chain was straight, for an "isometric" hold.

EX.  Scientists refer to tremor in the alpha 
band as oscillations of 8-12 Hz, while patho-
logical oscillations may have a frequency of 
4-6 Hz.  Estimate the frequency of oscillations 
in Figure A; do they fall in the alpha band or 
pathological band?

Figures 1 (schematic) and 2A, from Budini et al., 
Alpha Band Cortico-Muscular Coherence
Occurs in Healthy Individuals during
Mechanically-Induced Tremor, PLOS One (2014).  The 
"20%" refers to fact that subjects were asked to 
sustain elbow flexor contractions at 20% of their 
maximal voluntary isometric contraction. 

The brachialis muscle is responsible for flexing your elbow.  It is about 
20cm long when your elbow is bent at 90 degrees.  Let L be the length 
of this muscle.  If you attempt to keep your elbow bent at precisely 90 
degrees, the length L might satisfy the change equation below.

	 L' = r (20 - L).  

EX.  How is the equilibrium point of the above change equation related 
to your attempt to keep your elbow at 90 degrees?

EX.  What is the physical meaning of the parameter r?  Why might r be 
larger or smaller for different people or in different situations?



MT2  Muscle tremor
Your ability to hold your elbow at a precise angle depends on the trans-
mission of nerve signals; if your elbow is not at 90 degrees, it will take a 
moment for the sensory nerve signal to pass to a motor nerve signal to 
activate the muscle to pull your elbow back into position.  If the signal 
requires τ units of time to transmit, then a more appropriate change 
equation incorporates this time delay.

	 L' = r (20 - L(t - τ)).  

Load the Simple Muscle Simulator.  

EX.  Set the reflex magnitude to r=60.  The default time delay is 10 
ms.  Try increasing the time delay.  At what critical time delay does 
the system display sustained oscillations?  What frequency are these 
oscillations?

EX.  Start with a time delay of 20ms, and try increasing the reflex mag-
nitude.  This can happen, for example, if you are trying to counteract a 
weight pulling your elbow out of position.  At what critical reflex mag-
nitude does the system display sustained oscillations?  What frequency 
are these oscillations?

EX.  The brain normally suppresses the sensitivity of peripheral reflex-
es.  In some stroke patients, this suppression is lost, and the person's 
muscles will react too strongly (hyperreflexia).  Parkinson's disease is 
completely different, and often causes a time-delay in the transmission 
of nerve signals.  

Using the simple muscle simulator as a guide, how might the frequen-
cy of tremor distinguish patients whose tremor arises from Parkinson's 
disease from those whose tremor is caused by hyperreflexia?

  

The default reflex mag-
nitude is r=50, and the 
default time delay is τ = 
10ms in this simulator.  
The length L is restrict-
ed between 10cm and 
30cm in the simulator, 
because muscles cannot 
get too long or short.
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The equations here are 
the same as those in Lab 
#1, except that we have 
replaced the discrete 
time model ΔG/Δt and 
ΔI/Δt with the deriva-
tives G' and I'.

In Desmos, you can 
graph equations like
 

 x2

1+x2  - y = 0 

That would help with 
the I-nullcline.

IGO1  Insulin-Glucose:  Ultradian oscillations
In Lab 1, we studied the minimal model for the insulin-glucose system.  
The two state variables are G (concentration of glucose in the blood-
stream) and I (concentration of insulin in the bloodstream).  The mini-
mal model included a positive influence of glucose on insulin (glucose 
"tells" the beta cells to release more insulin) and a negative influence 
of insulin on glucose (insulin "tells" muscle and fat cells to take more 
gluose).

Another ingredient in the insulin-glucose system involves the alpha 
cells in the pancreas.  When insulin is low, the alpha cells release a 
hormone called glucagon; the glucagon tells the liver to release glucose 
into the bloodstream.  This is important so our cells have fuel (glucose) 
even when we are not eating, e.g., sleeping.  With this new element in 
our system, we add one more term to our glucose change equation.

G' = m + α
1+ekI-c  - s I G		 Liver production of glucose = α

1+ekI-c  
	
I' = q b G2

1+G2  - γ I  

EX. Use Desmos to explore the new term  α
1+ekI-c .  

With the parameter values α = 1, k = 2, c = 2, sketch the graph below.

EX.  Load the Insulin Glucose Regulation simulator.  We explored this in 
Lab 1, but without the new parameters and time delay.  Begin with the 
following parameters:

	 m = 2,   s = 7,   q=3,  B = 2,  γ = 5,   α = 1,   k = 2,   c = 2.
  
Experiment with the parameters m and α.  What value of α would 
maintain blood glucose concentration in the safe range, whether m=0 
(no glucose intake, e.g., when sleeping) or m=3 (constant high intake)?

Insulin in bloodstream
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IGO2  Insulin-Glucose:  Ultradian oscillations

The figures above display insulin and glucose concentrations under 
two circumstances.  Figure (A) illustrates a person who eats three meals 
in a day.  Figure (B) illustrates a person who undergoes a "glucose chal-
lenge", where they consume a large amount of glucose at the beginning 
of the time period and none afterwards.

EX.  In Figure (B), it seems the insulin and glucose concentrartions are 
oscillating while they return to equilibrium.  Estimate the period of 
oscillation shown in the data.

	 The period of oscillation is approximately __________ minutes.

EX.  Use the Insulin Glucose Regulation simulator to experiment with 
time delays.  There is a time delay for glucose to have an effect on insu-
lin production.  There is also a time delay for insulin to have an effect 
on the liver to release glucose.  What time delays most closely match 
the oscillation you see above?  Which of the two time delays seems 
most essential to produce such oscillations?  Explain how you came to 
this conclusion.
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Plots from Figure 1 
of Computer model for 
mechanisms underlying 
ultradian oscillations of 
insulin and glucose, by 
Jeppe Sturis et al., in 
American Journal of 
Physiology-Endocri-
nology and Metabolism 
(1991).



Osc7  Oscillations:  Synthesis
EX.  In this lab, we have seen three sources of oscillation.  Describe 
these three sources, and give one example of each, including state vari-
ables and change equation.

1.

2.

3.

EX.  Oscillations can sometimes "drive" oscillations.  Consider a system 
with state variable X, undergoing a change equation like

	 X' = O - kX.

Here O is an oscillating variable, such as O(t) = cos(t).  Describe a sit-
uation and state variable that could plausibly be modeled by such an 
equation.  Then draw a time series plot for how you think the quantity 
X would behave, given a starting value of X(0) = 0, and paramaters k=0 
and k=0.1.  

  



Osc8  Oscillations:  Synthesis
A Hopf bifurcation is a situation in which there is a system with a 
parameter p, and 

1.  When p is smaller than a critical value pc, the system tends towards 
a stable equilbrium point.

2.  When p is greater than pc, the stable equilibrium becomes unstable, 
and system exhibits stable long-term oscillations

EX.  Consider a Hopf bifurcation in a system with two state variables 
X and Y.  Draw pictures of trajectories in state space when p < pc, and 
when p > pc.  

EX.  Give an example from this lab in which you saw a Hopf bifurca-
tion.  Describe the system, its state variables, and the parameter with 
critical value.

  

123



Figure 5 from Perrin's Mouvement brownien et grandeurs moléculaires.  Perrin observed the ran-
dom motion (Brownian motion) of particles (gamboge, a tree resin used for yellow pigment), 
recording their position every 30 seconds.  Afterwards, he connected the positions by line 
segments; three trajectories are shown above in his figure.  The grid squares are 50 microns (1 
micron = 1 μm = 10-6 meters) in side length.    
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Laboratory 5
Randomness

Until now, all of our models—written as change equations—have been 
deterministic.  This means that the current state of the system deter-
mines the future state of the system.  The future is determined by the 
current state and the change equations.

When our models inevitably fail, we can explain the failure by saying 
that the real living world is complicated.  We can try to do better, fitting 
our model to more data, elaborating our model to better resemble reali-
ty, and we can go back to the lab or the field.

This lab introduces a fundamentally different approach to modeling, 
which strays from determinism to incorporate a controlled amount of 
randomness.  The unrealistically precise predictions of a deterministic 
model (e.g., there will be 5000 bacteria after 3 hours) are replaced by 
looser expectations of a stochastic model (e.g., we expect there will be 
5000 bacteria after 3 hours, and would be surprised if there are more 
than 8000 or fewer than 2000).  

There are good reasons to put randomness into a model.  One is a 
perceived futility in determinism.  Theoretically, one could perfectly 
deterministically model a coin toss, from the position and velocity of 
the coin and coin-flipper's hand, the exact contours and mass of the 
coin, the temperature and flow of the air, etc.  But that is not worth the 
trouble, if your interest is not in the physics of coin tosses!

Another reason is to understand robustness.  You may have a very nice 
deterministic model, change equations that seem to describe reality 
pretty well.  But will a bit of uncontrollable jitter make your model's 
predictions fall apart?  Is your model robust to noise, holding up to 
life's constant jittering in a useful way?  We can test robustness by add-
ing a bit of noise... adding a stochastic term to a deterministic model.

A final argument to study stochastic models is that they are the foun-
dation for understanding temperature and diffusion.  On the opposite 
page are the random motions of little particles under a microscope.  
Understanding them through a stochastic model allowed Perrin (fol-
lowing an idea of Einstein) to determine Avogadro's number.  We 
can count things (atoms and molecules) that we cannot see, thanks to 
stochastic models.

A stochastic model is 
a model which incor-
porates some random-
ness.  We will soon add 
stochastic terms to our 
change equations, e.g.,

     X' = 2X - ε,

where ε might desig-
nate a "stochastic term," 
like a randomly chosen 
number between 0 
and 100.  This would 
describe a typical 
exponential population 
growth, complicated 
with some random 
additional number of 
deaths during each unit 
of time.

Avogadro's number is 
about 6.022 × 1023.  This 
is the number of atoms 
of carbon in a pure 
sample of 12 grams of 
Carbon-12 (the isotope 
with 6 protons and 6 
neutrons).



RC1  From oscillations to...
Before going into randomness, we take a moment to examine chaos.  
Please remember that chaos is NOT the same as randomness!  Chaos 
can be wild and confusing, but it arises from deterministic systems.

The discrete logistic model is the simplist example where chaos can be 
found.   In this model, we consider a population P that changes over 
time, in discrete time intervals Δt = 1.  The change equation should 
look familiar from Lab 3.  

	 ΔP/Δt = β P (1 - P).

EX.  What are the equilibrium points for the above change equation?  In 
other words, at what values of P will ΔP/Δt= 0?

The only parameter in our model is β, which we think of as a birth rate, 
or relative growth rate, for our population, if crowding were ignored.

EX.  Set up a spreadsheet, with columns for t, P, Δt, and ΔP, with 
starting values t = 0, P = 0.5, and Δt = 1 throughout.  Use spreadsheet 
formulas to find the values of P for time t = 0, 1,..., 30, with the param-
eter choices β = 1.5, 2.25, 2.5, and 2.83.  Describe qualitatively how the 
population behaves for these four parameter values.

In the discrete logistic 
model here, we have 
made the carrying 
capacity 1, for simplic-
ity.  The reader may 
consider P = 1 to mean a 
population of 1 million 
bacteria, for example.  
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RC2  Chaos
EX.  Load the Discrete Logistic Explorer, and explore what happens 
when β = 3.0, and you choose starting values like 0.5 or 0.501 or 0.7 or 
0.3.  How do small/large changes in the starting value affect long-term 
values?  Write a sentence or two describing your findings, in light of 
Lorenz's description of chaos in the margin.  

The Discrete Logistic Explorer allows you to create a plot like the one 
below.  The horizontal axis is the birth rate β.  At each birth rate β, you 
can see the long-term behavior by looking at the plot above β.  When 
β is small, you should find a tendency towards equilibrium.  When β 
passes the first bifurcation point, you should find that P oscillates be-
tween two values.  After the next bifurcation point, P oscillates between 
four values.  Then 8, 16, etc., until the behavior of P becomes chaotic.  

EX.  Label the high-resolution bifurcation diagram below, so that the 
values of β are clear at the first and second bifurcation points, at the 
onset of chaos, and at the three-cycle.  Use the Discrete Logistic Explorer 
to estimate these values of β by experimentation; change the view win-
dow to locate the onset of chaos and the three-cycle!

β

Lorenz described chaos 
as "When the present 
determines the future, 
but the approximate 
present does not ap-
proximately determine 
the future."

Source:  Unpublished 
recollection by Christo-
pher M. Danforth.

First bifurcation point 
at β = _____

Second  bifurcation 
point at β = _____

A 3-cycle is located at 
β = _____

The onset of chaos at 
β = _____



RC3  Chaos is not randomness
The following time-series plots arise from the birth rate β = 3.0 in the 
discrete logistic model, ΔP/Δt = βP(1 - P).  The solid line starts at the 
value P = 0.5.  The dotted line starts at P = 0.501.  The difference be-
tween the two plots is invisible until t=8, when they start to drastically 
differ.

These plots exhibit two characteristics of chaos.  One characteristic is 
that small differences at one time lead to vast differences in the long 
term.  This is the so-called butterfly effect.

The next characteristic is determinism: despite the chaotic bouncing 
in the above time series plots, there is a strong connection between the 
current state of the system and the "next" state of the system.

EX.  Choose either the solid line or dotted line above.  For each time 
value t, place a dot at coordinates (P(t), P(t+1)).  We have started the 
plot below with dots at (0.5, 1.25) for t=1 and (1.25, 0.3) for t=2.  De-
scribe the pattern you see in the plot, after placing 20 dots.

0
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1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Discrete Logistic Model, β=3.0

Start at 0.5 Start at 0.501

Lorenz found chaos in 
the equations related 
to weather prediction.  
In 1972, he gave a talk 
titled, "Predictabili-
ty:  Does the flap of a 
butterfly's wings in 
Brazil set off a tornado 
in Texas?"

Current value of P
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1.5 The visible pattern is...
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RC4  A first look at randomness.
What would real randomness look like?  Randomness comes in many 
flavors, as we shall see.  To get started, we consider the following 
stochastic model.  We have a single state variable P, as before.  At 
each time step, P goes up or down randomly, by choosing a random 
"change" uniformly between -1 and 1.

	 ΔP/Δt = ε, with ε random, uniformly between -1 and 1.

Uniformly random means that there is no particular preference for any 
range of numbers within -1 and 1.  For example, there is a 50% chance 
that ε is between 0 and 1, and a 50% chance of choosing a number 
between -1 and 0.  There is a 25% chance of choosing a number in each 
interval (-1,-0.5) and (-0.5, 0) and (0,0.5) and (0.5, 1).  

EX.  For this uniform random number ε, what is the chance that ε is 
between 0.2 and 0.4?  Between -0.35 and -0.3?  

EX.  The result of choosing ε uniformly randomly at each time step is 
displayed below, starting with P = 0.  In fact, we have run this experie-
ment twice, choosing new random numbers each time, to generate two 
time series.  Contrast the plots below with the chaos on the previous 
page.  What visible features distinguish chaos from randomness?  

  

For simulations, com-
puters have sophisticat-
ed random number gen-
erators.  For example, 
the formula =RAND()in 
Excel or Google Sheets 
generates a random 
number uniformly be-
tween 0 and 1.  

The formula 
=2*RAND()-1 gener-
ates a random number 
uniformly between -1 
and 1.

-1

0

1

2

3

4

5

Two walks, starting at 0, with uniform change -1 < ε < 1 

First series Second series



RG1  Linear growth with random rate

But as shown in the figure above, the radial growth of a tree changes 
from year to year.  A stochastic change equation is

	 ΔR/Δt = ε, with ε random.

To make this meaningful, we have to consider the possibilities and 
probabilities for this random variable ε 

EX.  Looking at the above figure, using the black square as a reference, 
estimate the minimum and maximum width of a tree ring.

	 Minimum width ≈ ________ and maximum width ≈ ________

EX.  Load the Tree Ring Simulator.  This will simulate the radial growth 
of a tree, if each year's growth (tree ring width) is chosen uniformly 
randomly between a given minimum and maximum.  Using your val-
ues of minimum and maximum, how much total growth do you expect 
to find after 50 years?

EX.  Run the experiment 20 times, to create a histogram of the total 
growth found.  Use 5 bins, with your expectation in the central bin.  

Recall that the radius of a tree increases each year, producing a series of 
tree rings reflecting its age.  This radial growth is approximately linear; 
using cross-sections as displayed here, you might estimate the average 
rate of growth to be 0.8 mm/year.  Thus if R is the radius of the tree, in 
millimeters, R is governed by the change equation ΔR/Δt = 0.8.  

Image from Figure 1B 
of Carroll et al., Mille-
nium-Scale Crossdating 
and Inter-Annual Climate 
Sensitivities of Standing 
California Redwoods, 
in PLOS One, (2024).  
Three dots in ring from 
1960.  Additional dots 
mark decades.  Black 
square is 1mm x 1mm.
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RG2  Exponential growth with random rate.
E. Coli are grown in a petri dish.  Under controlled conditions, you ex-
pect the population to grow exponentially, according to the equation

	 ΔP/Δt = 0.03 P, where time is measured in minutes.  

EX.  If you start with 1000 bacteria in the dish, describe P(t) as an expo-
nential function of t, in this ideal circumstance.  Estimate the doubling 
time, using the techniques from Lab 2.

	 P(t) = _______________	 Doubling time = ______  minutes.

EX.  Even though you try to control their environment, precise control 
is never possible in the lab.  As a result, during "lucky" and "unlucky" 
minutes, the population grows according to the equations:

	 Lucky:  ΔP/Δt = 0.04 P	 Unlucky:  ΔP/Δt = 0.02 P

Give a formula for the number of bacteria, starting with 1000 as before, 
after they have x lucky minutes and y unlucky minutes.  Hint:  how 
many times do you multiply P by 1.04?  How many times do you mul-
tiply P by 1.02?

	
	 P(x,y) = _________________________

EX.  Use the Rapid Coin Flipper to generate 20 fair coin tosses.  Interpret-
ing these as lucky and unlucky minutes, draw a time-series plot of the 
population over time, starting with 1000 bacteria..  Use a semilog plot, 
as shown below.

EX 5.14.  If lucky and unlucky minutes are equally likely, how many 
bacteria do you expect after 30 minutes?  Use the Rapid Coin Flipper and 
share with classmates to provide a range of values.

Time (minutes)

Po
pu

la
tio

n

2000

1000

4000

For plot, it may be help-
ful collect your popu-
lation data in a spread-
sheet with columns for 
time t and population P.



Flip1  Probability:  Random variables and expectations
Formally speaking, a random variable consists of a set of possible 
outcomes, each with a probability.  If there are finitely many possible 
outcomes, we can describe a random variable with a table.  

When the outcomes are numbers, we can talk about our expectation 
for the random variable, which is a weighted average of the outcomes.  
If our random variable is called R, then our expectation is written E(R) 
with the boldface E standing for the word expectation. 

	 E(R) = The sum of all possible (outcome × probability).

If R is the random walk, with outcomes 1 and -1, each with probaility 
50%, then E(R) = (0.5)(1) + (0.5)(-1) = 0.5 - 0.5 = 0.  Moving to the right 
and moving to the left are equally likely, and our "expectation" is that 
we end up at zero.  Note that our expectation is not a real outcome!  It 
is just a way of describing an average of possible outcomes.

EX.  Let R be a fair die, with outcomes 1,2,3,4,5,6.  What are the proba-
bilities, given that the die is fair?  What is the expectation E(R)?

	 Prob(1) = Prob(2) = … =  Prob(6) = _______

	 E(R) = ___________

EX.  Consider a random variable R, guided by a biased coin.  The 
outcomes are 10 and -1.  The outcome -1 has probability 90%, and the 
outcome 10 has probability 10%.  What is the expected outcome?

	 E(R) = ___________   

EX.  A mold spot is circular with starting radius 10mm and area A.  
Every day, the radius has a 50% change of getting 1 mm larger, and a 
50% change of getting 1mm smaller.  What is the expected radius on 
the next day?  

What is the area A on the starting day, when the radius is 10mm?  What 
is the expected area on the next day?  This might be surprising!

  

The fair coin is a ran-
dom variable with table 
below

Outcome Probability

Heads 50% or 0.5
Tails 50% or 0.5

If a fair coin is used to 
determine a random 
walk, moving +1 for 
heads and -1 for tails, 
then each step of the 
walk is a random vari-
able.

Outcome Probability

1 50% or 0.5
-1 50% or 0.5
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Flip2  Probability:  Expectations and repetition
What happens if we flip a coin two times in a row?  There are four pos-
sible outcomes.  Heads then heads, heads then tails, tails then heads, or 
tails then tails.  We abbreviate them HH, HT, TH, TT.  Notice that we 
keep track of time, and consider HT and TH are different outcomes.  
If our coin flips are independent (the first coin toss doesn't affect the 
second), then these outcomes are equally likely.

What if we flip a coin three times in a row?  There are eight possible 
outcomes, each with probability 1/8, or 12.5% or 0.125.  These are 
displayed in the margin.  If coin tosses determine a numerical outcome, 
we can compute our expectations.

For example, suppose that we start at 0, and each Head pushes us to 
the right by 1, and each Tail pushes us to the left by 1.  Let L be the final 
location, a random variable with four outcomes and probabilities.

Location Coin tosses Probability
3 HHH 12.5%
1 HHT or HTH or THH 37.5%
-1 HTT or THT or TTH 37.5%
-3 TTT 12.5%

EX.  What is E(L), where L is the random "location" given above?

EX.  Start at zero, and suppose that each time the coin lands on heads, 
you move one unit to the right.  And each time the coin lands on tails, 
you start back at zero.  Tabulate the possible locations after three coin 
tosses in a table, corresponding coinc tosses, and probabilities.  If R is 
the resulting random variable, what is the expected value  E(R)?  

Location (R) Coin tosses Probability
0
1
2
3

EX.  Suppose that the coin is now unfair, with a 1/3 chance of landing 
on heads.  Let NH be the random variable which simply counts the 
number of heads (so coin tosses like HTH would yield NH = 2).  Tabu-
late the possible outcomes and probabilities for NH.  What is the expect-
ed value E(NH).

Flipping the fair coin 
twice yields the follow-
ing random variable.

Outcome Probability

HH 25%
HT 25%
TH 25%
TT 25%

Flipping the fair coin 
three times yields the 
following random 
variable.

Outcome Probability

HHH 12.5%
HHT 12.5%
HTH 12.5%
THH 12.5%
HTT 12.5%
THT 12.5%
TTH 12.5%
TTT 12.5%

E(R) = ___________



Flip3  Sharks and Tuna:  Tuna Lifespan
We return to our favorite ocean creatures, the shark and the tuna.  They 
swim around in the ocean, and when a tuna meets a shark, CHOMP.  
We have studied models of shark and tuna, which incorporate their 
separate birth/death rates, carrying capacities, interactions, and shark 
appetites.  But we have not yet considered a question of vital impor-
tance for a tuna:  how long might a tuna expect to live?

EX.  Suppose that by the end of each year, a tuna has a 50% chance of 
being eaten by a shark.  Tabulate the possible life-spans of a tuna, and 
their corresponding probabilities.  Hint:  consider being eaten by a 
shark as a coin-toss, and complete the following table.  (Note we have 
"rounded up" the lifespan.)

Lifespan (yrs) Coin tosses Probability
1 T 50%
2 HT 25%
3 HHT
4 HHHT
5 HHHHT
6 HHHHHT

EX.  Using this table, what is the expected lifespan of a tuna?  To 
answer this quesetion, express (Lifespan × Probability) as a fraction in 
each line of the table, and find the pattern.  Add at least 10 terms (lifes-
pans up to 10 years) to get a good estimate of expected lifespan.

EX.  Out of 1000 tuna, how many do you expect to survive for 5 years 
or longer?

EX.  In a safer region, a tuna has a 10% chance of being eaten by a shark 
each year.  What is the expected lifespan of the tuna there (assuming 
their only cause of death is sharks)?  

Note that after the tuna 
dies, we do not have 
to flip a coin.  But one 
could play this game 
by flipping a coin 6 
times.  All outcomes 
beginning with "T" 
yield a lifespan of 0 
years.  All outcomes 
beginning with "HT" 
yield a lifespan of 1 
year. 
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Flip4  Growth and collapse
Growth may be a smoothly controlled process in the lab, but in nature 
there are inevitable (if infrequent) disasters.  Consider the following 
process, for a state variable X and its change over time:

	 1.  X starts at zero.
	 2.  Each "good moment," X increases by 1.
	 3.  Each "bad moment," X collapses back to zero.

EX.  Describe a situation, with a single quantity X, which may be rea-
sonably modeled by the process above.

EX.  Imagine good moments and bad moments correspond to Heads 
and Tails from coin tosses.  If your sequence of coin tosses is HTTHT-
THTTHTHHHHTTHHTTHHHTHHTHHHTHHHH, then what is the 
final value of X and why?

EX.  Run the Growth and Collapse Simulator, with 90% probability of 
growth.  This runs the simulation for 100 time units, 500 times in a row 
(effectively 50,000 coin tosses!).  Sketch the resulting histogram below.

EX.  Experiment with parameters in the Growth and Collapse Simulator.  
Describe consistent patterns you notice about the bar heights in the 
histograms.
  



Yule1  The Yule birth process
Now we revisit our old friend, a dish of E. Coli.  We have studied a 
pure exponential model of growth, and more recently an exponen-
tial model of growth where the birth rate has a stochastic (random) 
element.  Here we study an exponential model of growth where the 
randomness is built into the individual.  

Begin with 10 bacteria.  Suppose that, each minute, each bacterium has 
(independent of each other!) a 5% chance of division.

EX.  After the first minute, what is the probability that you still have 10 
bacteria, i.e., none have divided?  Hint:  a 5% chance of division im-
plies a 95% chance of no division.  Use a calculator and the hint in the 
margin.

EX.  Use the Rapid Coin Flipper, with Heads representing division (5% 
probability), to predict the outcome for the 5 bacteria after one minute 
(5 coin tosses).  Then repeat, with as many coin tosses as necessary, to 
track the divisions for 5 minutes.  Draw a tree, with time proceeding 
from left to right, to display this information.  Highlight one lineage 
within this tree (the descendants of one starting bacterium).

EX.  Consider the related model, in which precisely 5% of the bacte-
ria divide during each unit (minute) of time.  (In this model, you are 
allowed to have fractional bacteria, like 10.5 bacteria.)  If the starting 
population is 10 bacteria at t=0, what is the formula for the population 
at time t?  This should exhibit exponential growth!

	 P(t) = _______________________________

EX.  Now, consider what this would look like on a semilog plot.  What 
is the formula for log10(P) as a function of t?  It should be linear!

	 log10(P(t)) = __________ t + _____________

If p is the probability 
of something happen-
ing once, then p2 is 
the probability that it 
happens in two inde-
pendent cases.  And p3 
is the probability that it 
happens in three inde-
pendent cases.  

A sample tree, starting 
with 2 bacteria, A and B.
A divides first, into X 
and Y.  Then X divides 
at the same time as B, 
while Y never divides.  
The result is 5 bacteria.

A

B

X
Y

Modeling populations 
at the individual level 
is called agent-based 
modeling.
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Yule2  Stochastic birth and death process
The Yule Process Simulator carries out a stochastic process, allowing 
each cell to divide with one probability, and die with another probabili-
ty (deaths occur before divisions) during each time interval.

EX.  Enter a division probability of 5%, and 0% death probability, and 
starting population 10.  The simulator will show the results of numer-
ous trials, with time series for P(t).  Compare the results in the simula-
tor to the exponential growth you might expect.  Focus on the semilog 
plot, and the slopes you find in the simulator.

EX.  Experiment with death probabilities and starting populations.  
What phenomena appear in the stochastic Yule Process Simulator that 
you cannot find in an exponential model?  Describe these phenomena 
and when they may occur.

 

EX.  In the laboratory, you carefully prepare 20 wells with 10 bacteria in 
each well.  They are kept in identical conditions, and allowed to grow 
for 2 hours.  Your colleague then looks at the wells for the next step in 
the experiment, and notices that some wells have twice, or even three 
times, as many bacteria as others!  They say that you must have messed 
up in your preparation.  How would you respond based on your expe-
rience in the above exercises?    

  

See G. Udny Yale, A 
mathematical theory of 
evolution, based on the 
conclusions of Dr. J. C. 
Willis, F.R.S., in the Phil-
osophical Transactions 
of the Royal Society of 
London. Series B (1924).

Rather than modeling 
the division of bacteria, 
Yule was interested in 
speciation:  the evolu-
tionary events when 
a population of one 
species splits into two 
species.

Above:  A 96-well plate, 
a dependable work-
horse of the lab.  There 
are 8 rows (A-H) and 
12 columns (1-12) for 96 
samples.  



GD1  Genetic drift
When we encounter evolution, we often learn first about natural se-
lection as the mechanism.  According to this mechanism, if a heritable 
trait offers a fitness advantage, the organisms with this trait will be 
more likely to reproduce and pass the trait onto its offspring, gradually 
causing the trait to be more common.  What is necessary is variation in 
heritable traits, and differences in reproductive success.  

Genetic drift is about what happens in the "neutral" setting, where 
there is variation in heritable traits, but no difference in reproductive 
success.  This is another mechanism for evolution, which must be stud-
ied alongside natural selection.

Banana slugs (Ariolimax columbianus) are wonderful large yellow slimy 
organisms which can be found in the redwood forests of California and 
Oregon.  Some have spots and some do not.  It has been hypothesized 
that the spots are a heritable trait, and may offer a fitness advantage 
via cryptic coloration, hiding them from predators.  To study this, one 
should compare this hypothesis of fitness advantage to the neutral 
hypothesis where spots have no effect on fitness.

Consider a population of 50 banana slugs, among which 10 have spots.  
This population is in equilibrium; each year, each banana slug pro-
duces two surviving children (for a total of 150 slugs).  But 100 banana 
slugs also die each year, bringing the total back down to 50.  The deaths 
are completely random.  Spotted slugs always have spotted offspring.  
Nonspotted slugs always have nonspotted offspring.

EX.  After one year, you have 50 banana slugs again.  What is the few-
est you could find with spots?  What is the most you could find with 
spots?  How many would you expect to see with spots and why?

EX.  Imagine now that a virus kills all but 5 banana slugs, 2 with spots 
and 3 without.  If all 5 slugs have two surviving children (making 15 
slugs total), and then 10 die, could the remainig slugs all have spots?  
Draw a diagram to illustrate how. 

See "Spotted Banana 
Slugs, Ariolimax colum-
bianus, and Canopy 
Cover," a poster by Sash 
Milstein at ideaFest 
2023.  https://digital-
commons.humboldt.
edu/ideafest2023/14/

In evolutionary biolo-
gy, fitness refers to the 
probability of having 
surviving offspring.  So 
fitness does not mean 
"being stronger."  It 
could mean better 
hiding from predators, 
caring for eggs, etc.

Banana slugs are 
hermaphrodites with 
fascinating mating hab-
its.  After impregnating 
each other (both can get 
pregnant after mating), 
they lay up to 30 eggs, 
some of which survive 
to maturity.
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GD2  Genetic drift:  The Wright-Fisher Model
Load the Genetic Drift Simulator.  We stay with the illustrative example 
of spotted and not-spotted banana slugs.  The simulator will progress 
through 300 generations of births and deaths, where the total popula-
tion remains the same.  One can track the subpopulations of spotted 
and nonspotted banana slugs.

EX.  Begin with 70% spotted and 30% nonspotted slugs.  Beginning 
with a total population of 100, study what happens in the simulation.  
Try clicking the "Simulate" button multiple times.  How often does 
fixation occur, where at the end there is only one type of banana slug.  
Answer with an estimated frequency (like 10%?  90%) of fixation, based 
on many simulations.  

EX.  How does the initial population affect the likelihood of fixation?  
Explain with a few precise examples.

EX.  A researcher finds that the banana slugs of Corvallis, Oregon are 
all spotted, while the banana slugs of Felton, California are all nonspot-
ted.  Provide a neutral explanation in terms of genetic drift.  What fac-
tors would make such a neutral explanation more or less likely, based 
on exploration with the Genetic Drift Simulator?

  

Our model here is a ver-
sion of the Wright-Fish-
er model, a common 
starting point for stud-
ies of genetic drift.

One typically learns 
about this in the setting 
of allelic frequency, 
but we are avoiding 
such important genetic 
technicalities.



Temp1  Temperature:  The kinetic theory of gases
Temperature is something we can all feel, because we have specialized 
neurons to sense temperature.  We can measure temperature with all 
sorts of thermometers.  What we feel and measure as temperature 
was mysterious for a very long time, though even in the 1680s, Robert 
Hooke argued (correctly!) that

Now Heat, as I fhall afterward prove, is nothing but the internal Mo-
tion of the Particles of Body

It would take almost 200 years for this to be made precise, when Max-
well brought probability into physics.  This is what we do here, to 
understand this thing called temperature.

Indeed, we now know that stuff is made of molecules.  In a gas, these 
molecules are flying, spinning, vibrating, all over the place.  The tem-
perature of the gas reflects all that wild motion.  We focus on the speed 
of molecules here.

According to Maxwell and Boltzmann, each molecule in a gas is going 
through a random walk.  At any moment, it is moving in a random 
direction in space.  And, it is moving at a random speed.  This random 
speed is not uniform (it is not a "random number between 0 and 100 
miles per hour").  Instead the speed probabilities depend on tempera-
ture according to the following continuous probability distribution.

	 P(v) = C  ( m
2kBT )3/2 v2 e-mv2 / 2kB T.

Here C is a constant which won't concern us.  The variable v is the 
speed of a molecule of gas, and m is the mass of the gas molecule.  The 
most interesting constant is kB, called Boltzmann's constant.  And T is 
the temperature, in degrees Kelvin.  

From Hooke, Lectures on 
Light, read in May 1681, 
and published posthu-
mously in 1705.

To convert Celsius to 
Kelvin, add 273.  So 
20°C = 293°K.  Kelvin 
is used because 0°K is 
"asbolute zero," a the-
oretical state in which 
everything is stationary.

Speed (meters per second)

Pr
ob

ab
ili

ty

The peak of the probability distribution (the curve above) locates the 
most frequently found speed, which we call the typical speed.

EX.  Look up Boltzmann's constant and the mass of an oxygen mole-
cule O2 in kilograms.  Convert room temperature to degrees Kelvin.  
Use Desmos to graph the function P(v), and find the typical speed of an 
oxygen molecule, in meters per second and miles per hour.

The typical speed of an oxygen molecule at room temperature is 

	 ____________ m/s,  or  _________ miles per hour.

What we call the typical 
speed is what statisti-
cians call the mode of 
the random variable.  
The average speed is a 
bit different, but the two 
are proportional in this 
context.

Typical speed
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Temp2  Temperature and the typical speed of molecules
EX.  Keeping Desmos open, allow the temperature parameter T to vary 
between 150°K and 300°K.  Collect data in the margin, to relate the tem-
perature to the typical speed of a molecule.  Using a log-log plot (in the 
Data Plotter with Log Scaling), find a power function relating the typical 
speed of an O2 molecule to the temperature T.

	 Typical speed = _____________× T_____________

EX.  Ozone is the molecule O3 , so its mass is 3/2 the mass of typical ox-
ygen gas O2.  How does the typical speed of ozone molecules compare 
with the typical speed of oxygen molecules at the same temperature?  

EX.  Summarize the relationship between the temperature of a gas, the 
mass of a gas molecule, and the typical speed of a gas molecule.

EX.  Gas molecules do not fly in straight lines forever.  They frequently 
bounce off each other, in random directions.  This is why we will model 
the situation with a random walk.  Let Δt be the average amount of 
time each molecule travels between collisions.  How do you think that 
Δt relates to the density of molecules N (the number of molecules per 
liter)?  How do you think Δt relates to the temperature T of the gas?  
Explain your answers.

  

Tempera-
ture

Typical 
speed

In Desmos, click the 
wrench icon to adjust 
the y-axis range to be 
very very small! 



Temp3  Temperature and equilibria
Consider the bistable system, with a quantity X and change equation

	 ΔX/Δt = X - X3.

EX. Draw the phase portrait for this system, showing all three equilibri-
um points (with values of X) and their stability.

EX.  With starting value X = -0.1, describe the long-term behavior.

Now imagine the system has a stochastic component, which leads to a 
change equation

	 ΔΧ/Δt = X - X3 + ε, where ε is a random velocity.

EX.  Imagine ε is chosen by a coin flip:  Heads means ε = 0.1, tails 
means ε = -0.1.  If the system starts at the equilibrium point X = -1, 
could it end up near the equilibrium point X = 1?  What if it starts at X 
= -0.1?  Use the Rapid Coin Flipper to experiment, and use this experi-
ment to explain why or why not.

EX.  Suppose that the system is at a higher temperature, so the random 
velocity ε is larger.  Now heads means ε = 0.5 and tails means ε = -0.5.  
Could the system escape the equilibrium point X = -1 and end up near 
X=1?  Explain what would need to happen.  

  

Recall that a one-vari-
able system is bistable 
if it has two stable equi-
librium points.
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Temp4  The atmospheric random walk.
In the atmosphere, air molecules (N2, O2, etc.) undergo a random walk 
as they fly around bouncing off each other.  But there are two interest-
ing complicating factors.  One is that gravity makes them move down-
wards a bit more often than they move upwards.  And second, there is 
solid stuff called the ground, which molecules bounce off of.

For a simplification, use the Rapid Coin Flipper to simulate the following 
process.  Start at altitude A = 3.  Every time the coin is heads, move up 
1.  Every time the coin is tails, move down 1.  But if the coin is already 
at 0 (the ground level), the coin must move up.  The state variable A 
cannot be less than zero.

EX.  Using a fair coin, and 10 simulations with 20 flips each, what are 
the 10 final values you find.  Start at A=3 each time.

Simulation 1 2 3 4 5 6 7 8 9 10
Final altitude

Repeat the experiment, where the coin has a 60% chance of tails, simu-
lating a bit of gravitational preference to move down.

Simulation 1 2 3 4 5 6 7 8 9 10
Final altitude

EX.  Run the Atmospheric Molecule Simulator with 100 molecules.  How 
do gravity and temperature affect the vertical velocities?  And how 
do gravity and temperature affect the final vertical distribution of the 
molecules; are there more near the surface or higher up?     

  

A sequence of 10 flips 
     HTHHT TTHHH
would yield altitudes

   3, 4,3,4,5,4, 3,2,3,4,5.

A sequence 
     TTHTT TTHHT
would yield altitudes

   3, 2,1,2,1,0, 1,0,1,2,1.

Note that the boldface 
"T" corresponds to an 
altitude change from 0 
to 1, since A must move 
up when A hits 0.



BM1  Brownian motion
Brownian motion is named for Robert Brown, who observed pollen 
grains in water under a microscope.  These grains constantly wiggled, 
and the wiggling never seemed to stop.  Brownian motion, we now un-
derstand, is a stochastic process caused by zillions of molecules bounc-
ing all over the place, colliding with each other at all sorts of angles and 
speeds.  A grain of pollen, much larger than a molecule, is bombarded 
by so many jiggling molecules that it too acquires a random wiggling 
that Robert Brown observed.  

Brownian motion occurs in all natural situations where molecules are 
able to move around.  In a typical room, each cubic centimeter of air 
contains about 2.5×1019 molecules, or about 25 million trillion mole-
cules.  These are whizzing about very quickly as you found before, and 
there are about 1033, or about a billion trillion trillion, collisions each 
second.  This is the source of Brownian motion in a gas.  

In a typical glass of water, each cubic centimeter of water contains 
about 3.3×1022 molecules.  These molecules stick to each other a bit, 
making it a liquid.  But they still try to zoom about and collide with 
each other.  Within the cubic centimeter of water, there are about 1036 
(a trillion trillion trillion) molecule collisions every second.  This is the 
source of Brownian motion in a liquid, and it causes larger particles to 
bounce around too.

EX.  A typical human cell has a mass of about 1 ng (nanogram), and 
about 70% of that mass is water.  Estimate how many molecules of wa-
ter are contained in a human cell.  

In 1905, Einstein combined the theory of Brownian motion, the relation-
ship between temperature and molecular motions, and work of Stokes 
on viscosity for particles moving in a liquid.  The result was a concept 
for an experiment... one that could prove (or disprove) the existence of 
molecules, and effectively count molecules without ever seeing them.  
Such an experiment was carried out a few years later by Perrin, ob-
serving the Brownian motion of tiny particles of tree resin.  Equipped 
with a camera lucida to record his observations, Perrin painstakingly 
tracked the motion of hundreds of these particles.  You will recreate his 
experiment here with the aid of the Brownian Motion Simulator.    

EX.  Within the simulator, what effect does temperature have on the 
Brownian motion of a particle?  Challenge:  At what temperature do 
you expect the Brownian motion to be twice as fast as at 20°C?

  

See Robert Brown, A 
brief account of microscop-
ical observations made in 
the months of June, July 
and August 1827, on the 
particles contained in the 
pollen of plants; and on 
the general existence of 
active molecules in organ-
ic and inorganic bodies, 
published in the Phil-
osophical Magazine, 
1828.

These estimates comes 
from Feynman's Lectures 
in Physics, Lecture 41.

One cubic 
centimeter 

looks like this 
box.
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BM2  Perrin's experiment
Now you will carry out Perrin's experiment with the Brownian Motion 
Simulator.  Set the particle radius to 0.5 microns, viscosity 1 centiPoise, 
and temperature to 20°C.  Click the Diffuse button, and after 10 sec-
onds, the Get Data button.  This should produce a table of x,y coordi-
nates, and the squared-displacement d2 = x2 + y2.

EX.  Create a spreadsheet, with a header row for time and first col-
umn to label experiments.  Each experiment is a 10-second run of the 
Brownian Motion Simulator, with the same particle size, viscosity, and 
temperature throughout.  Record the squared-displacements for each 
experiment in its row.  The result should look like the sample below.

The units of viscosity 
here are centiPoise (cP).  
It is convenient because 
1 cP is the viscosity of 
water at 20°C.  In SI 
units, 1cP = 10-3 Pa s, 
where Pa = Pascals, 
the SI unit of pres-
sure, and s = seconds.

After including at least 15 experiments (rows), create a new row 
for the averages.  For this, use a spreadsheet formula like =AVER-
AGE(B2:B20) to average the cells in each column B2, B3, ..., B20.  
Make sure to average the experiments (squared-displacements) and not 
the time!

Use this final row of averages to create a plot with time on the horizon-
tal axis, and average squared-displacement on the vertical axis.  In-
clude a best-fit line, as well as your data points.  Record the slope of the 
best-fit line, and draw everything below.

Time (sec)

Sq
ua

re
d-

di
sp

la
ce

m
en

t d
2 
= 

x2 +
y2

EX.  Compare your slope to other groups working on this problem.   
What range of slopes do you find, and how many experiments did the 
other groups perform? 

Slope of line is

___________________



BM3  Einstein-Perrin to Boltzmann
In Einstein's 1905 doctoral thesis, he found that the squared-displace-
ment can be expected to grow linearly over time, and moreover the 
coefficient for this linear growth depends on temperature (T), particle 
radius (r), and viscosity (η).  There was also a constant, then unknown, 
called kB.

	 E(x2 + y2) =  ( kBT
3πrη ) × t 

EX.  Why do you think T is on the top of the fraction, while r and η are 
on the bottom of the fraction?

EX.  In an individual experiment, did you find that squared-displace-
ment grew linearly over time?  Why do you think we averaged over 15 
or more experiments?

EX.  On the previous page, you found the slope of the line relating 
squared-displacement to time.  Recalling that x and y were measured in 
microns, what is the slope in m2/sec (square meters per second)?

EX.  By Einstein's formula, your slope equals kBT/3πrη.  Use your 
results to estimate Boltzmann's constant, in the units below.  Fill in the 
blanks in the margin to help with unit conversions.

	 kB = ______________ m2 kg / s2 °K
	

EX.  Compare your estimation of kB to a value you look up.  Write 
down this "real" value, and describe your error with a percentage. 

T = 20°C = ______°K

r = 0.5μm = ______ m

η = 1cP = .001 kg/m s

η is the lowercase Greek 
letter eta.  Draw it be-
low for practice.

η

Einstein, On the move-
ment of small particles 
suspended in stationary 
liquids required by the 
molecular-kinetic theory of 
heat, 1905.



BM4  Boltzmann to Avogadro.  Synthesis
EX.  The ideal gas law states PV = kB N T, where P is the pressure, V the 
volume, N the number of molecules, and T the temperature of a gas.  
Which of these quantities can be directly experimentally measured?  
For each such quantity, what is the name of the instrument one typi-
cally uses for measurement.

EX.  Carbon dioxide is widely available in solid form, as dry ice.  It 
sublimates to form carbon dioxide gas at room temperature.  In the 
laboratory, 44 grams of dry ice is allowed to sublimate into an empty 
(vacuum) 1 Liter container at 300°K.  The result is 44 grams of CO2 gas 
in a 1L container.  The container is attached to a pressure meter, which 
records a pressure of 2,500,000 Pascals.  

Use your estimate of Boltzmann's constant to estimate N, the number 
of molecules in the container, showing key steps in your work below.

EX. Compare your result to Avogadro's number.  How close is it, and 
why should it be close?
  

147

For this, you will need 
to convert units.  Note 
that:

1 Pascal = 1 kg m/s
1 Liter = 0.001 m3



Figure 3 from Population biology of infectious diseases:  Part I, by Anderson and May (Nature 1979).  
This is a typical diagram for a compartmental model, where individuals travel from one com-
partment to another according to formulaic (often stochastic) rules and parameters.  
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Laboratory 6
Order

In this final laboratory, we will study models that arise when individu-
als migrate between a few compartments, according to a consistent set 
of probabilistic rules.  These are Markov chains, which have applica-
tions across physical, biological, and social sciences.  

For example, students in our class are either sick (too sick to attend 
class) or healthy (healthy enough to attend class).  The two compart-
ments are "sick" and "healthy".  As students get sick and (hopefully) 
recover, they migrate between these compartments.  This would be a 
Markov process if their health were determined by random variables; 
e.g., if each day, every healthy student has a 5% chance of getting sick, 
and inversely, every sick student has a 20% chance of recovering.

Another example:  ion channels can be open or closed.  On a single cell, 
there may be thousands of ion channels, migrating between the open 
and closed compartments.  

Another:  A particular location in DNA (e.g., the genomic coordinate 
chr1:1234567) can be occupied by four nucleotides, abbreviated A, T, G, 
and C.  The coordinate may migrate (via mutation) between these four 
compartments.  

EX.  Describe one more biological example, where an individual (or-
ganism, cell, molecule, etc.) migrates among compartments.  Describe 
the example, and the particular compartments.

The structures of life, from DNA to the brain to the ecosystem, emerge 
from multitudes of similar individuals, behaving randomly.  The emer-
gence of order is the subject of this last chapter.  



Osm1  Osmosis:  A tale of two compartments
Osmosis is a strange phenomenon that is central to the functioning of 
cells, the growth of plants, and more.  The basic setup requires two 
physical compartments, which we call A and B.  There are two kinds 
of molecules, a solvent (e.g., water), and a solute (e.g., sucrose) which 
dissolves.

These two compartments, A and B, are separated by a semiperme-
able membrane, which means that solvent (water) molecules can flow 
through the membrane in either direction (the "permeable" part), but 
solute molecules (sugar) cannot flow through the membrane.  

If compartments A and B are filled with pure water, and sugar is placed 
into compartment B, the sugar is forever trapped in compartment B.  
But a remarkable thing happens... the water seems to flow from A to B!  
This is called osmosis and it can be precisely measured.

A picture of an appara-
tus designed by Pfeffer, 
to measure the pressure 
due to osmosis.  Figure 
1 from Osmotiche Un-
tersuchungen, published 
in 1877.  It is a more 
sophisticated version 
of the U-tube diagram 
shown here.

H2O H2O H2O H2O and
sugar

H2O H2O and
sugar

Add sugar

Water moves!

To think about this system, consider a setup where compartments A 
and B initially contain 1000 water molecules each.  Water molecules 
freely dance between compartments A and B without preference.  Then 
sugar is poured into compartment B.  Suddenly, the water molecules 
"prefer" compartment B.

EX.  Suppose that each second, each water molecule in compartment A 
has a 20% chance of moving to compartment B.  But each water mole-
cule in compartment B has a 10% chance of moving to compartment A.   
Starting with 1000 molecules in each compartment, how many mole-
cules do you expect in each compartment after one second?

	 ________ in compartment A, and _________ in compartment B.

EX.  How many do you expect in each compartment after two seconds?  
After three seconds?  Tabulate your answers below.

	 Time		  Compartment A		  Compartment B
	 0
	 1 sec
	 2 sec
	 3 sec

A B A

A

B
B
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Osm2  Equilibrium in compartments
Equilibrium in this system occurs when the number of water molecules 
making the transition from A to B equals the number of water mole-
cules making the transition from B to A.

Let A be the number of water molecules in compartment A.
Let B be the number of water molecules in compartment B.

EX.  Equilibrium occurs when 0.2 A = 0.1 B.  Briefly explain why this is 
true, and find the number of molecules in each compartment at equilib-
rium.  (Note we begin with 2000 waer molecules!)

EX.  Load the Two-compartment Markov Chain Explorer, and enter the giv-
en transition probabilities.  Use this to sketch time-series plots which 
show the number of molecules in compartments A and B over time and 
the equilibrium you have found.

EX.  How would the time series plots change if water molecules in 
compartment A moved to B with probability 40%, while molecules in 
compartment B moved to A with probability 20%?  
  

Note that we do not 
care about the sugar 
molecules in this model!  
They stay in compart-
ment B always.  In prac-
tice, the concentration 
of the sugar solution 
directly affects the tran-
sition probabilities.  



LA1  State vectors and transition matrices
Compartmental models are general and powerful, and the underlying 
mathematics involves vectors and matrices.  Vectors and matrices are 
fundamentally ways of packaging a few numbers into a box.  For vec-
tors, we package the numbers into a column.  For matrices, we package 
the numbers into a rectangle (usually a square in this class!)  

In our two compartment system, the state of the system required two 
numbers called A and B, representing the number of individuals in 
compartments A and B.  The state of the system can thus be packaged 
in a vector.  The initial state of the system had 1000 molecules in com-
partment A, and 1000 in compartment B.  When we package this as a 
state vector, it looks like this:

	 The initial state of the system was:  (1000)1000
  

EX.  Looking back at the previous pages, represent the state of the sys-
tem after 1 second, 2 seconds, and 3 seconds, using three vectors.

A square matrix is a square arrangement of numbers.  We can use a 
square matrix to package all of the transition probabilities.  In our first 
system, a molecule from compartment A had a 10% chance of moving 
to compartment B.  A molecule from compartment B had a 20% chance 
of moving to compartment A.  Thus a molecule in compartment A has 
a 90% chance of staying in compartment A.  And a molecule in com-
partment B has a 80% chance of staying in compartment B.  These four 
numbers are packaged into our transition matrix.  

These two pages pro-
vide an introduction to 
an area of mathematics 
called linear algebra, 
which is all about vec-
tors and matrices.

(0.9  0.2)0.1  0.8
To... A

B 

From A    B

EX.  Suppose that the transition probability from A to B is 30% and the 
transition probability from B to A is 5%.  What is the transition matrix?

EX.  What is the sum of the numbers in each column?  What is the sum 
of the numbers in each row?  Why do you find something in columns 
but not rows?

There is a 20% chance 
that a molecule moves 
from compartment B to 
compartment A.
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LA2  Matrix and vector arithmetic
Vectors can be added, according to the following definition.

	  (x)y
+ (u)v

= (x+u)y+v
EX.  Imagine you start with 1000 molecules in compartment A and 1000 
in compartment B.  You then add 500 molecules to A and 300 to B.  Ex-
press the result as a vector addition fact, in the form above.

	 (1000)1000
  + (        )     

 = (        )
Let M be a square 2x2 matrix.  Let X be a 2-dimensional column vector.  
This means that M packages 4 numbers in a square, while X packages 
two numbers in a column.  Mathematicians created a way to multiply 
these two packages together, to form a product M · X.

	 (a  b)c  d
· (x)y

= (ax + by)cx + dy  
EX.  Using the multiplication formula above, compute the product

	 (0.9  0.2)0.1  0.8
 ·  (1000)1000

 = (        )
EX.  How does this relate to the computations on page Osm1?

EX.  Let M be the transition matrix, and X the initial state vector, as 
displayed in the margin.  Compute the following, filling in the blanks.  
You may want to do the drills on the next two pages first!

We will frequently use 
the following properties 
of matrix/vector multi-
plication and addition.  

Distributive law:

M·(X+Y) = M·X + M·Y

Associative law:

(M·N) ·X = M ·(N ·X)

M = (0.9  0.1)0.2  0.8

X = (1000)1000

(M · M) · X = ( (0.9  0.2)0.1  0.8
 · (0.9  0.2)0.1  0.8 )·(1000)1000

=(               )           
·(1000)1000

 =(        ) 

M · (M · X) = (0.9  0.2)0.1  0.8 ( (0.9  0.2)0.1  0.8
 · (1000)1000 ) = (0.9  0.2)0.1  0.8

 (        ) =(        )
EX.  How does the vector M · (M · X)  relate to the exercises on Osm1?



LA3  Drill:  Vector and Matrix Arithmetic
EX.  Vector addition.  Add and subtract the following vectors.

(10)3 + (-3.5)4  = _______     (100)2  + (200)4  = _______    (11)1  - (10)1  = ________

(1)2
3

 + (4)5
6

 = 
_______

           (1)-1
-1

 + (-1)1
-1

 + (-1)-1
1

= 
_______

  

To draw a vector (a)b  , draw an arrow from (0,0) to (a,b) in the Cartesian plane.  

EX.  In the following, draw both given vectors X and Y and their sum X+Y.  Then draw dotted 
lines from X to X+Y and from Y to X+Y, to illustrate the parallelogram property.

        X = (1)0
, Y = (0)1

                  X = (2)3
, Y = (-1)2

            	   X = (1)2 , Y = ( 3)-2

Recall that a matrix and vector are multiplied by the following rule.

	 (a  b)c  d
 ·  (x)y

 = (ax + by)cx + dy
EX.  Use this rule to compute M · X, for the following matrices M and vectors X.

M = (1  1)0  1
, X = (3)2

 	 M = (0  1)1  0
, X = (-3)1

 	 M = (1  2)2  4
, X = ( 2)-1

 

M · X = __________		  M · X = __________		  M · X = __________

EX.  Suppose that (0.6  0.4)0.2  0.8
 ·  (x)y

 = (x)y
and x+y = 100.  

What are the values of x and y?

  

(0,0) (0,0)

(0,0)
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LA4  Drill:  Matrix multiplication
We have seen two operations so far:

	 Vector + Vector = Vector.  	 Matrix · Vector = Vector.

We finish with the most complicated operation:

	 Matrix · Matrix = Matrix.

Let M and N be square 2x2 matrices.  They can be multipled to form a 
square 2x2 matrix M · N.  To find the top-left entry of M ·N, one "dots 
together" the top row of M with the left column of N.  The pattern 
takes a bit of practice.  

	 (a  b)c  d
· (e  f)g  h

= (ae + bg    af + bh)ce + dg    cf + dh

EX.  Multiply the following 2x2 matrices.

	 (1  2)3  4
· (5  6)7  8

 = __________    (1  3)0  1
·(1  2)2  1

 = __________

When M is a square matrix, we can multiply M by itself, and M · M 
will be another square matrix.  This is called M2.  We can multiply M by 
itself again, to form M·M·M, which is naturally called M3.  

EX.  Let M = (1  3)0  1
.  Compute M2 and M3.  

Find a pattern to give a formula for Mn when n is any whole number.

M2 = ___________,	      M3 = ____________,	 Mn = ____________

EX.  Let M = (1  1)0  1
 and N = (1  0)1  1

.  Compute M · N and N · M.

More generally, one can 
multiply a p by q matrix 
(p rows and q columns) 
with a q by r matrix (q 
rows and r columns), 
and the result will be a 
p by r matrix. 

We have boldfaced the 
top row (a b)  of M and 

the left column (e)g
 

of N.

To "dot them together," 
refers to the dot product 
ae + bg.

Matrix multiplicaiton is 
not commutative!  
It is rarely true that 
M·N= N·M

Matrix multiplication is 
associative, i.e.,

M·(N·R) = (M·N)·R,
for any three matrices 
M,N,R.



IC1  Equilibrium:  Open and closed channels.
Cell membranes are covered with channels.  Most channels are ion 
channels, allowing charged particles like sodium ions (Na+), potassi-
um ions (K+), Chlorine ions (Cl-), hydrogen ions (protons, H+) to pass 
through the cell membrane.  A single ion channel can maintain a flow 
of millions of ions per second, creating a measurable electrical current.  
A single cell can have thousands of ion channels, of hundreds of types.

Physically, these channels are large proteins which form a tunnel across 
the cell membrane.  Channels can be gated, meaning opened or closed, 
either by voltage changes, or by binding a molecule.

  

There are also aquapo-
rins, which shuttle wa-
ter molecules through 
the cell membrane!

A patch clamp technique can measure the current through a single 
ion channel, yielding a pattern like the one displayed above.  When 
the graph is down low, it reflects the ion channel being open, allowing 
the current to pass through.  When the graph is up high, it reflects the 
ion channel being closed.  At the beginning and end of the time period 
shown, the channel is closed.  The burst of downward activity here 
reflects the binding of GABA to a receptor, opening the channel.

EX.  During the period of GABA binding, how much time does the 
channel spend open?  And how much closed?  Estimate your answer in 
milliseconds, using the scale to the right of the graph.  (Hint:  10ms is 
about a pinky-width!)

EX.  During the period of GABA binding, the channel is closed a few 
times.  How many such closed periods do you see?  How long do those 
closed periods last?  Estimate your answer in milliseconds.  

EX.  During GABA binding, the behavior of a channel is somewhat ran-
dom, with one probability of going from open to closed, and a different 
probability of going from closed to open.  Which transition do you 
think is more likely here?

Figure 2(c) of Sin-
gle-channel recording of 
ligand-gated ion chan-
nels, by Mortensen and 
Smart, (Nature Proto-
cols 2007).  Reproduced 
with annotations.

The SI unit of current is 
the amp or ampere.  A 
current of 1 amp can be 
deadly (and 0.01 amps 
is painful).  The current 
through a single ion 
channel is measured in 
picoamps.  1 pA = 10-12 
amps.

Period of GABA binding

Channel open

Channel closed

Most channels have a 
variety of "open" and 
"closed" states, but we 
just consider two.
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IC2  Simulation:  Ion Channels
Load the Ion Channel Simulator.  This will provide a simulated patch-
clamp recording, based on transition probabilities you provide.

EX.  How are the two transition probabilities (probability of open-to-
closed and closed-to-open) related to the total time that the ion channel 
is open?  Answer this by holding one probability constant and dou-
bling or tripling the other, to see the effect.

EX.  Begin with the two transition probabilities at 10% and 20%.  What 
happens if you double these probabilities to 20% and 40%, or triple 
them to 30% and 60%?  How does that change effect the patch-clamp 
readout?

EX.  By exploration, find transition probabilities which could reason-
ably explain the real patch-clamp recording on the previous page.

	 Probability of open-to-closed transition:

	 Probability of closed-to-open transition:

EX.  A single ion channel generates a current of 2 pA (picoamps) when 
it is open.  If the ion channels on a cell are open 70% of the time, inde-
pendently of each other, how much current would flow through the 
cell membrane with 1000 ion channels? 

  

This simulator is built 
to randomly switch 
between open and 
closed states from your 
provided probabilities.  
It also adds a little bit 
of "Gaussian noise" to 
simulate the random 
wiggles that you might 
find it a real patch 
clamp recording



IC3  Equilibrium:  Matrix Model
In a matrix model, the state of a system is represented by a vector X.  
The state of the system changes, from one moment to the next (with 
some time interval Δt), by multiplying X by a transition matrix M.

Consider a cell with 1000 ion channels that can be open or closed.  We 
model their state by a vector with two numbers:  how many channels 
are closed and how many are open.  If the cell begins with all channels 
closed, then...

	 The initial state of the system is X0 = (1000)0 .

If the cell gets an appropriate signal, e.g., from an agonist, the state will 
change.  Each millisecond, closed channels will open with probability 
10%; and open channels will close with probability 1%.  

	 The transition matrix is M = (0.9  0.01)0.1  0.99
 .	

EX.  After 1ms, the state is called X1.  Our expectation for this state is 
given by the vector X1 = M·X0.  Compute this matrix X1.

EX.  After 2ms, the state is called X2.  Our expectation for this state is 
given by the vector X2 = M·M·X0.  Note that this is also M·X1.  Compute 
this vector X2.

A state X will be in equilibrium if X = M·X.  This can be converted into 
a system of linear equations as follows.

If X = (u)v is the unknown equilibrium state, the condition X = M·X 
can be expanded as

		  (0.9  0.01)0.1  0.99 (u)v = (u)v .

EX.  Multiply the matrix and vector on the left side.  Use this to find a 
system of two linear equations in the two variables u and v.

		  ______ u + _____ v = u.

		  ______ u + _____ v = v.

The total population of ion channels does not change.  Express this fact 
as a third linear equation.
			 
		  ______ u + ______ v = ___________.

An agonist is a mol-
ecule which binds to 
a receptor, setting off 
a physical process 
which opens an ion 
channel.  Ion channels 
controlled this way are 
called ligand-gated ion 
channels.

The subscript 0, in X0 
refers to the state at 
time zero.
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IC4  Equilibrium and ratio:  Markov Models
In a Markov chain, the transition matrix is a 
matrix of probabilities (numbers between 0 
and 1), whose columns add up to 1.  If there 
are two compartments, the transition matrix 
has the form

	 M = (1-p     q )   p    1-q
 .  

Here p is the probability of an A-to-B transi-
tion, and q is the probability of a B-to-A tran-
sition.  An equilibrium state is where M·X = X.   
In other words,   

	 X = (u)v
 and (1-p     q )   p    1-q (u)v

= (u)v
 

Theorem:  If the ratio u:v equals the ratio q:p,
then X is an equilibrium state for M.

On the previous page, we considered a transi-
tion matrix where the closed-to-open probabil-
ity was p=10% and the open-to-closed proba-
bility was q=1%.  

EX.  Suppose that X = (u)v  is an equilibrium 

state.  Using the above values of p and q, what 
is the ratio u:v?

EX.  If there are 1000 ion channels, what is the 
equilibrium number of open and closed chan-
nels, using this ratio?  (Round to the nearest 
whole number)

EX. (Challenge).  If u:v = q:p, then u = qc and 
v = pc (for some constant c).  Multiply M·X, 
to show that M·X=X.  This proves the above 
theorem.

 (1-p     q )   p    1-q (qc)pc
 = 

EX.  Ratio drill!

Fill in the blanks to find ratios equal to 2:3

Sample:  4:6		  6:___

	 10:___		  ___:30

	 70:___		  2000:_____

Fill in the blanks to find ratios equal to 4:1.

Sample:  12:3		  ___:2

	 400:___		 1:____

	 300:____	 ___:150

EX.  Find numbers u,v with u:v = 4:1 and u+v 
= 1000.

	 u = _________	v = ___________

EX.  Find numbers u,v with u:v = 7:3 and u+v 
= 500.

	 u = _________	v = ___________

EX.  Reframe EX 6.36 as a question that looks 
just like EX 6.32 and 6.33.  Just write the ques-
tion below.



BC1  Breast cancer:  Transitions between three cell states
Almost all of the cells in your body have almost the same DNA.  What 
makes a cell from one tissue different from another is their cell state, 
which is largely determined by which genes are expressed.  If DNA is 
the recipe book for proteins, not every recipe is followed in every cell.  
Cells can change their state, if they follow a different set of recipes.  For 
example, hematopoietic stem cells (HSCs) are in one cell state, and as 
they develop, they can turn into red blood cells, a different cell state!

Within a breast cancer tumor, cells often transition among cell states.  
One model considers three states:

 	 Stem-like (S):  Implicated in metastasis and drug-resistance.
	 Basal (B):  Resembling structural cells of the milk duct.
	 Luminal (L):  Resembling cells that line the milk duct.

Tumors that have different proportions of these kinds of cells have dif-
ferent risk profiles.  Culturing these cells in the lab, scientists found that 
cells can transition from one state to another.  From one tumor sample, 
they found the following transition probabilities (per cell cycle).

	 B to L:  0%		  L to B:  49%
	 L to S:	 4%		  S to L:  7%
	 S to B:	 35%		  B to S:  1%

EX.  Fill in the following matrix, to create a 3x3 transition matrix M for 
this Markov chain.

		     From..         B           L          S 	
			   B  (            )		  To...	 L

			   S

EX.  Suppose that you begin with 1000 cells in each state (B, L, S).  
According to the above transition matrix, how many cells do expect to 
find in each state after one cell cycle.  Multiply a vector by the matrix M 
to find the answer.    

  

Two almosts are need-
ed.  E.g., sperm and egg 
cells are haploid, having 
only one of each chro-
mosome.  B-cells have 
sections of randomly 
shuffled DNA which 
produce antibodies for 
numerous foreign in-
vaders.  Cells have their 
own random mutations 
too.

These probabilities 
come from Stochastic 
State Transitions Give 
Rise to Phenotypic Equi-
librium in Populations of 
Cancer Cells, by Gupta, 
Piyush B. et al., in Cell 
(2011).

Metastasis is when the 
cancer spreads outside 
the tissue where it 
starts, e.g., to lungs or 
bone or liver or brain.
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BC2  Breast cancer:  simulation and equilibrium
EX.  Just looking at the transition matrix, what cell states to you expect 
to find most often, and why?

Load the Three-Compartment Matrix Modeler.  Enter your transition ma-
trix M from the previous page to begin simulating.  

EX.  Starting with 1000 cells of each state, how many cells do you find 
in each state at equilibrium?  How is this affected if you change the 
starting numbers, but keep the total number of cells the same?

EX.  In another tumor sample, the transition probabilities are given in 
the margin.  What kind of cells do you think are most common in such 
tumors?

EX.  Consider two treatment approaches.  One destroys all stem-like 
tumor cells for a short time.  Another treatment disrupts the cell-state 
transitions for a long time, changing the transition matrix so that B to 
S transitions and L to S transitions have probability zero.  Compare the 
effects of these two treatments.   
  

B to L:  8%		
L to B:  0%
L to S:	 1%		
S to L:  30%
S to B:	 9%		
B to S:  1%



Les1  Birth and death.  Leslie matrix
So far, our matrix models have been Markov chains, in which popula-
tions migrate between a few states.  The total population has remained 
the same throughout.  But this is not how life (organisms, cells, etc.) 
work:  there is also birth and death.  Fortunately, matrix models are 
flexible enough to accommodate this complication.

Here is a model of black bears, to illustrate the complexity.  We consid-
er an age-stratified model, with juvenile (young) bears and adult (old) 
bears.  Let J be the number of juveniles and A the number of adults.

Each year, 10% of the juveniles die.  25% of the juveniles become adults.  
The remaining 65% are still juveniles the next year.

Each year, 50% of the adults are adult females, who each produce one 
juvenile each year, and 10% of the adults die.

EX.  Imagine a population of 20 juveniles and 100 adults.  According to 
the above assumptions, how many juveniles and adults will there be in 
the following year?  

	 ________ juveniles and ________ adults.

The previous question can be solved by multiplying M·X, where X is 

the state vector X = (20)100
, and M is the Leslie matrix (0.65  0.5)0.25  0.9

 .

EX.  How are the numbers in the Leslie matrix related to the numbers 
given in the model for birth, death, and aging?  Describe how each 
number (0.65, 0.5, 0.25, 0.9) comes from the given model.

  

It is sometimes helpful 
to draw a diagram to 
keep track of the num-
bers.  See below.

Juveniles
J(t)

Adults
A(t)

dead

dead

65%

25%50%

10%

10%

90%
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Les2  Eigenvectors.  Proportional stability.
When M is a square matrix (like 2 by 2, or 3 by 3, etc.), we say that a 
nonzero vector X is an eigenvector of M when M · X is proportional to 
X.  Here, proportional means that M · X = λ · X, for some scalar λ.  The 
word scalar is just a fancy word for "number" when we want to empha-
size that it is not a vector.  When M · X = λ · X, the scalar λ is called the 
eigenvalue.  

For example, suppose X is an equilibrium vector for a transition ma-
trix M.  Then M · X = X, so X is an eigenvector of M with eigenvalue 1.

EX.  Let M be the Leslie matrix for the black bear system,

M = (0.65  0.5)0.25  0.9
.  Let X = (J)A

 be a state vector.  

Turn the equation M · X = X into a pair of linear equations, to show that 
the only equilibrium state is when J = 0 and A = 0.

EX.  Now consider the state vector X = (100)100
.  Multiply M · X to show 

that X is an eigenvector of M.  What is the eigenvalue?  

EX.  If you begin with the state vector X = (100)100
, how many juveniles 

and adults will you have after t years?  Express your answer using 

exponential functions, and the eigenvalue you found.

	 J(t) = _____________________________

	 A(t) = ____________________________

EX.  Drill!  Scale each 
ofthe given vectors X by 
the given scalar λ.

λ = 3, X = (2)5 .

λ · X = ______

λ = 0.5, X = (20)10 .

λ · X = ______

λ = 1, X = (20)20 .

λ · X = ______



Les3  Black bears:  Trajectories in state space
We keep our black bear matrix model from the previous page, with 

Leslie matrix M = (0.65  0.5)0.25  0.9
 describing the transitions from juvenile 

to adult, and the births and deaths.  

EX.  Use the grid below to draw an arrow from a state X to a state M · 
X, for at least 10 starting states X.  (We have drawn a few such arrows 
as examples.)  

EX.  Using a different color, but on the same plot, draw the trajectory 
you expect to find, if you begin with a population of 20 juveniles and 
60 adults.  

For this exercise, you 
may wish to use the 
Quick Matrix Calculator.

N
um

be
r o

f a
du

lts

0 100

0
10

0

Number of juveniles

EX.  If you start with a population with some juvenile and some adult 
black bears, and wait 30 years, what do you expect?  Describe your an-
swer, in terms of how many black bears (more or less?  twice as many?  
10 times? 100 times?) and the relative numbers of juvelines and adults.  
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Les4  Expansion, contraction, and survival

The Leslie matrix M = (0.65  0.5)0.25  0.9
 has one direction of expansion; 

states with equal numbers of juveniles and adults exhibit steady expo-
nential growth.

In fact, this Leslie matrix has one direction of contraction too.

EX.  Show that the vector X = (-20)10
 is an eigenvector of M.  What is 

its eigenvalue?

This eigenvector does not belong to our state space, because we cannot 
have -20 juveniles.  But geometrically, it is useful for showing that our 
system contracts along one direction and expands in another.  Load the 
Two-dimensional Matrix Visualizer, and enter the Leslie matrix to explore.

EX.  Consider what happens if the black bears have worse outcomes.  
The birth rate for adults drops from 50% to 40%.  The death rate for ju-
veniles increases to 40%, with 50% of juveniles remaining juvenile, and 
10% maturing to adults.  The adult death rate increases to 20%.   What 
is the resulting Leslie matrix?

EX.  Use the Two-dimensional Matrix Visualizer.  What are the two eigen-
values for the new Leslie matrix?  How do these eigenvalues relate to 
the long-term survival of the black bear population?
  



Les5  Oscillatory approach from a Leslie Matrix.
We have seen oscillation from three sources:  the simple harmonic os-
cillator, limit cycles, and time delay (in a negative feedback loop).  Here 
we will see that matrix models can also exhibit oscillation.

Consider the following Leslie matrix:  M = (0.1  1.4)0.4  0.2 .  

EX.  Describe a situation of birth, death, and aging, which would be 
modeled by the above matrix.  Again the first row/column corresponds 
to juveniles and the second to adults. 

EX.  Start with 30 juveniles and 100 adults.  Draw time series plots, 
showing how the populations change over time.

EX.  Use the Two-dimensional Matrix Visualizer and enter the Leslie ma-
trix above.  Start with a "unit square" of sample states, which represents 
various states in our juvenile/adult system.  What happens in this 
system in the short-term and long-term.  One eigenvalue is negative, 
and one eigenvalue is positive but less than one.  How does this relate 
to the behavior of the system?

  

This sequence of exam-
ples comes from Model-
ing Life, by Garfinkel et 
al., Chapter 6.5.
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Les6  Oscillation from Leslie Matrix
Here we adapt a matrix model of Bodine, also discussed in Modeling 
Life, which exhibits sustained oscillations.  It is a model of locusts, 
which go through three life stages:  Eggs (E), Hoppers (H), and Adults 
(A).  We track only the female population.  

Each year, 2% of the eggs survive and become hoppers.  The rest die.

Each year, 5% of the hoppers survive and become adults.  The rest die.

Each year, every adult lays 1000 eggs before dying.  

EX.  What is the Leslie matrix?  The first row/column should corre-
spond to eggs, the second to hoppers, and the third to adults.

		  M = 

EX.  Load the Three Compartment Matrix Modeler, and enter the Leslie 
matrix above.  Run the model to see what happens, and describe the 
resulting oscillations.

EX.  A critique of such models is that they do not describe oscillations 
that we really see, because the oscillations are not robust.  Try changing 
the numbers 2%, 5%, and 1000 slightly.  What happens to the oscilla-
tion?  Describe two changes you tried, and how it affected the oscilla-
tions. 

  

See Chapter 9 of Math-
ematics for the Life Sci-
ences, by Erin Bodine et 
al., Princeton University 
Press (2014).



Epi1  Epidemiology:  An S/I Model
The simplest models of human epidemiology sorts people into two 
compartments, called susceptible (S) and infected (I).  Imagine that 
infection is caused by exposure to a pathogen, and that everyone who 
is infected recovers eventually.  

A starting point is given by the following Markov chain.  Each day, a 
susceptible person has a 1% chance of being infected.  And each day, an 
infected person has a 20% chance of recovering, rejoining the suscepti-
ble pool.

EX.  Based on this model, how long does it take a typical infected per-
son to recover from illness?

EX.  In an equilibrium state, what percentage of the population will be 
in each compartment?  If the population consists of 200 students in this 
class, how many do you expect to be sick on any particular day?

EX.  Sometimes, people exposed to a pathogen develop immunity, so 
that they do not become sick the next time they are exposed.  This is 
the case for some types of dengue for example.  To model this, consid-
er three compartments:  susceptible (S), infected (I), and immune (M).  
Modify the previous model to include transitions from the infected to 
immune compartments, and also a small chance of death from infec-
tion.  Describe your three-compartment model below.

  

Here infection is caused 
when a susceptible 
person is exposed to a 
pathogen.  A pathogen 
is any disease-causing 
micro-organism, e.g., 
bacteria, viruses, pro-
tozoa.  We are not yet 
considering a conta-
gious disease, in which 
a susceptible person in-
teracts with an infected 
person.
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Epi2  Epidemiology:  Complications and Variations
EX.  What is the transition matrix for your susceptible (S), infected (I), 
and immune (M) model?  

EX.  Use the Three Compartment Matrix Modeler to explore your S/I/M 
model.  Describe what happens, in the long term, if you start with a 
population entirely of susceptible people.

EX.  Suppose that infections are caused by interactions between suscep-
tible and infected persons.  Instead of a matrix model, a "change equa-
tion" would be more appropriate, in the style of Lotka-Volterra and 
others.  Write such change equations below, for the three compartments 
S, I, and M.  

	 S' = 

	 I' = 

	 M' = 

  
In your model, what is the coefficient of SI, and what does it mean?



Syn1  Synthesis:  Randomness and Order
EX.  Lab 5 was all about randomness:  stochastic processes.  This lab is 
titled "Order".  What is random about the systems in this chapter, and 
in what way did you find orderly results?

EX.  The models in this chapter were simpler, in some ways, than the 
change equations from Lab 1.  Describe the fundamental difference 
between a change equation (e.g. Lotka-Volterra, Insulin-Glucose, 
Holling-Tanner) and a matrix model (e.g. Ion Channels, Osmosis, 
Age-stratified growth).
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Syn2  Synthesis:  Exponential growth and decay
EX.  A fundamental pair of models we have seen are exponential 
growth and exponential decay.  Write two paragraphs about these.  The 
first should provide multiple examples of where these models arise 
naturally in physical and life sciences, within this lab manual or out-
side it.  The second should provide your best explanation for why these 
models show up so often in the sciences.

  



Syn3  Synthesis:  Modeling and your interests
EX.  We have seen a wide variety of models, from contexts of chemis-
try and biochemistry, cell biology, physiology, ecology, and evolution.  
Consider your scientific goals, future specialty, particular interests.  
Choose one mathematical model related to your particular interests 
from this lab manual.  Describe the model here, and evaluate the model 
using the criteria from Lab 1.
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Syn4  Synthesis:  Draw a picture.
EX.  Draw us a picture to celebrate your completion of the lab manual.  
Please be nice.  
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Fin

The Sciences Sing a Lullabye
	 by Albert Goldbarth

Physics says: go to sleep. Of course
you're tired. Every atom in you
has been dancing the shimmy in silver shoes
nonstop from mitosis to now.
Quit tapping your feet. They'll dance
inside themselves without you. Go to sleep.

Geology says: it will be all right. Slow inch
by inch America is giving itself
to the ocean. Go to sleep. Let darkness
lap at your sides. Give darkness an inch.
You aren't alone. All of the continents used to be
one body. You aren't alone. Go to sleep.

Astronomy says: the sun will rise tomorrow,
Zoology says: on rainbow-fish and lithe gazelle,
Psychology says: but first it has to be night, so
Biology says: the body-clocks are stopped all over town
and
History says: here are the blankets, layer on layer, down 
and down.
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vector  163
equilibrium point

attractive  88
evolution  138
expectation  125, 132
exponential decay  64
exponential function  41, 50

derivative of  51
natural form  61

exponential growth
characterization  58
doubling time  57

first-order growth rate  35, 61
first-order reaction  80
fitness  138
FitzHugh-Nagumo model  113
fixation  139
fold change  14, 15
force  97
frequency  102
gated  156
gene  90
genetic drift  138
giga  48
glucose  24, 104
glycolysis  104

Higgins-Selkov model  107
growth rate  37
Hertz (Hz)  102
Hill function  26
histogram  130
Holling-Tanner model  108
Hopf bifurcation  123
Hutchinson model  117
independent

random variable  133
infected  168
insulin  24

resistance  29
sensitivity  24

interaction term  18
ion

hydrogen  81
ion channel  113, 156
kilo  48
kinetics

chemical  80
lac operon  76
lactose  77
lag period  35
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Leslie matrix  162
lifespan  134
light  102

speed of  103
limit cycle  95, 110
linear

function  41, 45
derivative of  44

growth  37
modeling  62

linear algebra  152
logarithms  49, 54

natural  60
logistic growth  69
Lotka-Volterra equation  18

generalized  88
Markov chain  149
matrix  152
matrix model  158
mega  48
messenger RNA  90
metabolic rate  63
metabolism

first-order  78
metastasis  160
micro  48
milli  48
model  22

building  22
continuous-time  68
discrete-time  68
evaluating  22
logistic  69, 70, 71

molar  80
mole  80
momentum  97
mRNA  90
muscle tremor  118
nano  48
natural selection  138
neural spike  113
nullcline  83
oscillation  95
parameter  4
Parkinson's disease  119
pathogen  168
percent  10
period  99, 100
permeate  77
pH  81
pharmacokinetics  46, 47
phase portrait  70, 73, 75, 96
phase shift  105
pico  48
Poincare-Bendixson theorem  112

power function  38, 41
derivative of  44
modeling  63

power rule  43
powers of 10  48
predator-prey  88
proportionality

constants of  16
direct  16
equations of  16

protein  90
proxy measurement  36
random variable  130

uniform  129
rate of change  5
relative change  11
robust  125, 167
saturation  26, 29, 77, 108
self-interaction  68
semilog plot  14, 56, 57, 131
semipermeable membrane  150
sigmoid  26
simple harmonic oscillator  95, 98
sine  101
sinusoidal  95
SI units  48
slope  37
speciation  137
squared-displacement  145
stable spiral  110
state

of the system  4
space  6
trajectory in space  6
variable  4

steady state  28
steep negative feedback  115
stochastic  125
sugar  77

glucose  24
lactose  77

susceptible  168
temperature  140
terms

in an equation  27
interaction  18

time  3
time delay  95, 114

in logistic model  117
time-series  7
trajectory  6
transcribe  90
transition  151

matrix  152
translate  90



ultradian oscillation  121
unstable spiral  110
vector  152
vector field  19
wavelength  103
weighted average  132
Yule process  136


