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Abstract

In this paper, I follow the notes of G. Shimura to discuss the Eisen-
stein series associated to the action of a modular group in SLy(C) on
a 3-dimensional hyperbolic space.

1 Quaternions and Linear Fractional Transforma-
tions

Recall that the quaternions, denoted H, are defined by H=R & Ri G Rj &
Rk, where i, j, k satisfy the relations: i’ = j2 = k> = —l and ij = —ji = k,
jk = —kj =1, ki = —ik = j.

In addition to the usual quaternion conjugation, there are three impor-
tant inner automorphisms of the quaternions. Namely, we have conjugation
by the three elements 4, j, k. Given a quaternion z = a + bi + ¢j + dk, we
note that its conjugate is given by:

z=a—bi—cj — dk,
and the inner automorphisms are given by:

izi L =a+bi—cj — dk,

jzi~t =a—bi+ cj — dk,

kzk™!' = a— bi — ¢j + dk.
There is a natural embedding: R — C = R@&R: — H. This embedding
will be implicitly understood throughout.

Now we consider the properties of SLs(C), naturally embedded in GLo(H).
The following matrices will be used very often:



10 —1 . 10 =y . 10 -k
e—ll 0],]6—6]—[]. Ol,ke—ek—lk 0].

Also, note that for any a € GLy(H), ‘aea = det(a)e. We now characterize
SLy(C) alternately as a subset of GLy(H).

Proposition 1 SLy(C) = {a € GLy(H) | tajea = je,'akea = ke}.

PrROOF: Let H denote the set on the right hand side above, and suppose
that o € H. Then we see that

jeae L7 =ta7! = keae LR
Therefore eae ! commutes with k' = 4. From the properties of conju-
gation by i above, this implies that eae™! € GLo(C). Hence o € GLy(C).
Since the entries of o are complex, we see that ‘aj = jla, so that in partic-
ular,
je =tajea = jlaea.

From this, wee see that ‘aea = €. Thus a € SLy(C). Hence H C SLo(C).
For the converse, take o in SLy(C). Then by similar arguments, we have:

tajea = jlaea = je,
and likewise for k. Hence v € H. Thus SLy(C) C H so H = SLy(C).

Q.E.D.

Let G hereafter denote the group SLy(C), keeping in mind the above
formulation. Let us now define the action of G on a suitable upper half
space in H. This upper half space is defined by:

S={a+bi+cje€H|abceR,c>0}.

Let p denote the automorphism of H given by z” = izi~!. Then S” is
just the half-space opposite of S, whose elements have negative j component
rather than positive.

To understand the action of G on 5, we first study the following sets
of matrices. Using them, the desired action and the factors of automorphy
arise naturally from the next proposition.



0

X={£eM2(H)|t5je£=[3 _d a,d>0,téke§=l2 0]}

V= {n € H? | Lijjen < 0, 'fken = 0} .

Proposition 2 The following maps are bijections:

(1) SxHXﬁVvia(z,u)l—)[Zi];

% % . ¥z A0
(2) SxH* xH —)sza(z,)\,u)l—)l 1 1]l0 H]'

ProOF: First, suppose that n = l z ] € V. Then we see from the
definition of V' that:

(@[f g}lg ?ﬁ]lz]=ﬂmF4%y=Q

(b) gjz —zjy <O0.
From (b), we see that zy # 0. Let z = zy'. From (a), we see that
kzk~! = z. Hence z € C @ Rj. Moreover from (b), we see that jz — zj =

7Y (gjz — zjy)y~! < 0. Hence z € S. Therefore n = l Z;J ] Conversely,

it is easy to show that given z € S and y € H*, the matrix l z; ] isin V.

This finishes the proof of (1). Next, suppose £ = l Z :; ] € X. Then we

may see that l 2 is in V. We have from the definition of X that

v 0 —j u x| |[a O
z j 0 v oyl| |0 —d|’
Hence Z ] [ v ] | 0 . Looking at the entries of this

Jju  jx 0 —d
and the similar equation involving k yields the following equations:

QL
N
|

—ujy + vjzr =0,



—ukv + vku =0,

—ujv + vju > 0.
From the last of these, we see that uv # 0. Now letting z = xy~!, we arrive
at kuv™'k™! = o7 'a = jozy~'j~! so that uv™! = 2°. Thus we have ¢ =

P 0
l zl i ] l 8 y ] The converse may be seen by elementary computation

as well, so we have proven (2).
Q.ED.

Now let us see the importance of X and V in considering linear fractional
transformations. First note that G acts on X and V by left multiplication.
Thus given any a € G, and z € S, by our previous proposition, we have, for
some w(a, z) € S and some A« 2), p(, z):

2oz | | w ow Ma, 2) 0
0‘[1 1]‘[1 1“ 0 u(a,z)]' (1)

Then we see that the map z — w(a, z) gives a bona fide action of G on S, so
hereafter we denote az = w(cw, z). We call the functions A and p the factors
a b

d] € G,z € 5, we

of automorphy. Explicitly, given elements: o = l

may compute:
az = (az +b)(cz +d) 7,

Ma,z) = ez +d = (cz+d)’,
pula, z) = cz +d.

Note also that G acts also on S, and «(2”) = (az)”. In other words,
the sign of the 5 component of an element of S or S is invariant under the
action of G. We may look more closely at the effect of the action upon the
j component as follows:

Given z € S, let 7(z) denote the j component of z. Note that this is
given explicitly by 7(z) = zj — jz. Then we see that if £ = l zlf’ i ] , then

we have:
= . | 2n(=) 0
"Ejee = l 0 —2n() ] :



By Equation (1) this yields:

[ n(z) 0 ] _ [ AMa, z) 0 ] [ n(az) 0 ] [ AMa, z) 0 ]
0 pla2) '

Hence we arrive at the explicit result:

n(a(z)) = |n(e, 2)| 7n(z) = [A(a, 2)| *n(2). (2)

As a by-product of this equation, note that |M «, z)| = |u(a, 2)|.

Let us now use these properties of the action of G on S to derive some
results on the structure of S as it relates to the action. Namely, we now
investigate the structure of S as a quotient of G by an appropriate subgroup,
and the invariant measure and metric of S with respect to G.

0 a!
Then, we may describe the action of G on S with the following:

Let us define the parabolic subgroup of G, P = {( a b ) € G}.

Proposition 3 (1) {a € Gla(j) = j} = SU(2),
(2) G acts transitively on S,
(3) G=P-SU(2),
(4) S = SLy(C)/SU(2).

a b

PROOF: For (1), suppose that o = l e d ] € G. Then we see that:

a(j)=j <= aj+b=j(cj+d) =—c+dj
a b
-b a
= acSU(2).

= a=|

For the last step, note that since a € G, we know that |a* + [b]* = 1.
Conversely, if a € SU(2), then it is easy to show that «a(j) = j.
For (2), Suppose that u +wvj € S, with u € C, v € Ry. Then define:

1 u U%O
0 1 0 vz |

=

[NIE




Then we know that @ € G, and aj = u + vj. By our last result, this is
sufficient to show that G is transitive on S.

For (3), first note that clearly P-SU(2) C G. Furthermore, given o € G,
such that aj = w, there exists an element 3 € P such that 85 = w, as in
the proof of (2). Then we see that 8~ 'aj = j, so that 8~ 'a = v for some
v € SU(2) by (1). Hence a = 8y, s0 G = P - SU(2).

Now (4) follows directly from (1), (2), and (3), using basic properties of
topological groups.

Q.E.D.

Now we investigate the metric properties of S induced by this group
action.

Lemma 1 d(az) = kp(a, z)ilkfldzu(oz, z)7 L
PROOF: By equation (1), we may deduce that:

l *  j(z—21) ] _ l (e, z1)” 0 ] l x  jlaz —az) ] l p(a, z)? 0

* * 0 ,u(a,zl) * * 0 :U‘(aaz)

Multiplying the matrices on the right hand side and equating yields:

jz==) = pla,z21) jlaz — az)pl(a, 2),
z—z = § tip(a,z)i tjlaz — az)p(a, 2).

Letting z; tend to z gives us the differential:
dz = kjulen )k~ d(az) (e, 2),
so that we may solve for d(az) as:
d(az) = km_lkfldz,u(a,z)*l.
Q.ED.

Proposition 4 Identifying an element o with its action upon S, we have:

ljacob(e)] = |u(er, 2)| 7",



PrOOF: Consider the space S = C® Rj C H. Let ¢ : H — H be given
by ¢(z) = kXk Lz for some A € H*. Then we may observe that S is stable
under ¢; for since S = {x € H | kzk~ ' = z}, and given z € S,

kp(z)k™ = k- kAT 2 k™! = AZkAMT! = EMk— Lz = é(z),

we have ¢(z) € S. Thus we see that the jacobian jacob(¢) = |A|°
S. Putting \ = ,u(oz,z)_1 and applying our last lemma yields the desired
result.

Q.E.D.

The Haar measure on S induced by this group action then is the unique

measure p satisfying
/ xr(z)dp = / xr(a(z))dp,

for all open sets R, where xr denotes the characteristic function of R. Then,
our last proposition together with equation (2) gives us the following invari-
ant measure, with z = = 4+ yi + vy:
|dz A dy A dv
—

7(2)
Along similar lines, we may also compute the invariant metric on S to be
n(z) " (dz? + dy? + dv?).

dp =

2 The K-Bessel Function

The important properties of Eisenstein series are derived from the analytic
properties of the K-Bessel function. In this section, we study the properties
of the K-Bessel function, and use them to compute an important Fourier
transform.

Define the K-Bessel function for all y > 0, s € C by:

K(s,y) 2/0 e VU s =gy,

It will also be convenient to define a normalized version of the K-Bessel
function, given by:
/ t t~ 1 tS 1dt
Kl 2



It is related to our original K-Bessel function via K(s,y) = 2K,(2y), and
more generally, we may see that for a € C,

1 %0 .
Ks(ay) = §a*5/0 e gyt—a® i ys—1 gy

The K-Bessel functions will arise in our context as the unique solutions
of a differential equation. Namely, f(y) = Ks(y) is a solution of

v " (y) +uf () — (v +5°)f =0.
Also, the function k(y) = yK,(ay) satisfies
vk (y) — yk'(y) — (@®y® +5* = 1)k = 0. (3)

Under sufficient growth conditions, we will later see that this last solution
is picked out uniquely. It will be important to know that for s within a
compact set, we have as y gets large,

K (s,9)| < Ce™). (4)

where C' depends on the set that we allow s to vary on. To see this, note
2
that t +¢ ! = (t% — t_%) + 2. Hence we see that:

—2y o 7y(t%7t7%)2 s—1
|K(s,y)] < e € |t° " |dt
0

IN

(o) L 172

o A G T
0

< e WK (Re(s), yo),

where we assume y > yo. Hence for s within a compact set, we see that
|K (s,9)| < C(e™?Y), for all y > yq.

There are three special properties of the K-Bessel functions that we will
need. The first one is:

K(s,y) = K(=s,y). (5)

To see this, just make the substitution ¢ + ¢!,

The second property is critical to the relationship between the K-Bessel
function and the Eisenstein series through the Fourier transform. It ex-
presses a certain integral in terms of the K-Bessel function. Namely, we

have: - ~
/ e—(a2t—|—b2t*1)t5—1dt _ <a> K(S, ab). (6)
0



This can be seen via the substitution u = |%| t, and note that we implicitly
assumed ab # 0.

Our third property allows us to understand the arithmetic properties
of the Fourier coefficients of Eisenstein series. It expresses the derivatives
of the K-Bessel function with respect to y in a form very well adapted to
arithmetic computation.

Integration by parts on the definition of K(s,y) yields:

o

O

N / T e () (1 — et
S 0

0

0 - dt
_ y/ e YT (gl sy O
s Jo t

= %[K(s-{—l,y) - K(s—1,y)].

Moreover, if we let K™ (s, y) = (;—y)mK(s,y), then we may see that in

particular:

KW (s,y) = / eV () (¢ + )t
0

= _K(S+17y) _K(S_]-ay)7

or, in general, we have the formula which is our aforementioned third prop-
erty:

m
K™ (s,y) = (-1)" Y <m>K(S+m—2k,y)- (7)
— \ k
k=0
We are now in a position to show that the function k(y) = yKs(ay)
is picked out uniquely by it’s differential equation (3), given appropriate
growth conditions. Specifically we have:

Proposition 5 Suppose that k(y) satisfies the differential equation y?k" (y)—
yk'(y) — (a*y* + s> — 1)k = 0 as above, and also that k(y) = O(y®) for some
B e€R asy — oo. Then k(y) = Cfq(y) where fo(y) = yKs(ay) for some
constant C'.

PrOOF: It is not difficult to check that our function f,(y) = yK(ay)
satisfies the differential equation, with the aid of equation (7). Moreover, it
satisfies the growth condition, since yK(ay) = £ K (s, ), and we may apply
the growth estimate (4). Now given a function k as above, put h = f k'— f!k.
Then h' = f,k" — f"k = y~'h hence h = cy for some constant ¢. Now, we



know that f and k&’ are both O(y?) with D € R, and we may also estimate
fa to be O(e199/2), so that f,k' — f'k = ay implies a = 0. Hence k is a
constant multiple of f, as desired.

Q.ED.

Now, let us use these three properties to perform an important calcula-
tion: the Fourier transform of (2% 4+ y2 +v2)~* where v is held constant.
Consider the following integral:

/ /OO e*ﬂt($2+y2+’v2)e*27‘f’i($a+yb) 5L dt.
R?2 JO

We evaluate it in two ways, by switching the order of integration. In-
tegrating with respect to t first relates this integral to the desired Fourier
transform. Integrating first with respect to z and y relates the integral to
the K-Bessel function. First we integrate with respect to ¢:

/ /oo e—7rt(a:2+y2—|—v2)e—27ri(aca—|—yb) 5=t
R2Jo

= L(s)m % (2% + y? + v?) e 2m@atvb) gudy,
R2

Now switching the order of integration, we may evaluate a standard Gaussian
integral to get:

/oo / e*ﬂt($2+y2+v2)e*27‘f’i($a+yb) #5714t (8)
0 JR?
:/ ts—2e—7r(tv2+t_1(az—l—bz))dt (9)
0
b' s—1
= (M) K(s —1,mv|a + bi]). (10)
v
To arrive at the last step, we assume that a? + b? # 0 and apply our third
property, equation (7). In the case that ¢ = b = 0, we may integrate
equation (9) to get:
2 —m(to+t~1(a?+b2)) 1-s,,2(1—s)
/ " ‘e dt =T(s— 1) v . (11)
0

We may put together all of these results to arrive at the Fourier trans-
form of (22 + 4 4+ v2)™°. Let Fy(a,b) denote this Fourier transform, so that
explicitly, we have:

Fy(a,b) = / 2 (2 + 42 +0?) e 2t gy
R

Then from our previous results, we arrive at the following two cases:

10



(1) Suppose a? + b # 0 and Re(s) > 0. Then we have:

Fs(a,b) =

7 (la+bi]\*7" .
K(s—1 .
F(s)< ) (s — 1, 7v]a + bi)

v

(2) Suppose a =b =0 and Re(s) > 1. Then we have:

(s — 1)7r02(175) _ T2 =28

Fi(a.8) = =515 ST

3 Automorphic Eigenforms

An automorphic eigenform is a function on the upper half-space S, satisfying
three conditions. First, it must be invariant under the action of a certain
subgroup of G. Second, it must be an eigenfunction of the Laplacian for the
upper half-space. Finally, it must satisfy a certain growth condition. Here
and throughout, let K denote a quadratic imaginary field over the rationals.
Let a denote an integral ideal in Og. Then, we define the subgroup:

10

a] = {a € SLy(0Ok) |a= l 01

] (mod aM5(Ok))}.
A subgroup I' C G is called a congruence subgroup, if I' D I'[a] as a subgroup
of finite index for some a. Then, a congruence subgroup I' a discrete subroup
of G, with I'\\S having finite volume.

Now, with u = x + 4y, we may compute the Laplacian on S, considered

as the Riemannian manifold S = SLy(C)/SU(2), from the form of the

invariant metric:
d* d* d? 0 9? d? 0
I = 02 | —v— =0 = +4 —v—.
0 <8x2 Top T aﬂ) You " (aflﬂ N auaa> er

Then for any v € SLy(K) and any suitable function f on S, since the
metric is G-invariant:

[L(N)](v2) = L(f(72)). (12)

With these definitions in mind, we define an automorphic eigenform for
a congruence subgroup I' to be a real-analytic function f on S satisfying the
conditions:

(1) foy=fforallyel,

11



(2) Lf = M\f for some X € C,
(3) f(y(u+vj)) = O(@W?) as v — oo for all v € SLy(K).

Now, we wish to show that every automorphic eigenform f has an ex-
pansion in terms of K-Bessel functions. First, note that such a function f is
periodic with respect to the lattice a, since it is invariant under the action

of the matrices, l (1) 117 ] for every b € a. Thus, if we let dx denote the

different of K, then since afldl}1 is dual to a with respect to the trace map,
f has the expansion:

flu+wvy) = Z ca, v)e™tr(ew),

aEa—ld;(:l
Since f is an eigenfunction of the Laplacian, we compute Lf to be:

Lf= Z emitrau) [1220” —wvd — 7T2N(a)f020] =\,

tz,ea*ld;(1

where here we let ¢’ and ¢ denote derivatives with respect to v. Hence, ¢
satisfies the differential equation:

v?d" —vd — (72N (a)v? — N)e = 0.

In the case a = 0, this yields the differential equation, vc” — vc’ + Ac = 0.
Letting « = 1 +v1— X and o = 1 — sqrtl — X\ allows us to express the
general solution as v = Byc® + Bsyc® for general constants By, Bs. In the
case tha a # 0, recall that this is precisely the differential equation in (3).
Moreover, the growth condition that we have stipulated gives the uniqueness
of the solution, so that combining results, we get:

f(u + 'Uj) = Blca + BQCO/ + Z C(a)’l)KS(W|a|U)€7Titr(au)-
O#aca—tdy!

Here, we are letting s2 =1 — \.

We denote by A(A,I') the space of all automorphic eigenforms, for the
congruence subgroup I' with eigenvalue X\. Furthermore, we define S(A,T') to
be the space of cusp forms, i.e. those automorphic eigenforms with constant
term zero with respect to the above expansion.

12



Given two elements f,g € A(X,I'), we define their inner product by:

(f.9) = / fadp(z

where we are letting ® = I'\S and p be the invariant measure that we
derived previously.

4 Eisenstein Series for a Quadratic Imaginary Field

In this section, we define the Eisenstein Series on our space S with respect
to the full modular group I' = SLy(Ok). We will then discuss the central
properties of these Eisenstein series, namely their Fourier expansion, and
their functional equation. We define the Eisenstein series by:

E(s,z) =n(z)* Y. lez+d . (13)

0#(c,d)e0?%,

This is defined for z = v+ vj € § and s a complex number for which this
series converges. More precisely, by using the integral test, we may check
that the sum (13) converges absolutely for all Re(s) > 2. Let f(y) = |y|=*
for y € S, and let f denote the Fourier transform of f considered as a
function on C, which we computed in Section (2). Then we may evaluate
the Fourier coefficients of the Eisenstein series as follows:

ST D g™ Y [t

0£deOk 0£ce0k acc 10k

n(z)""E(s, 2)

_ wCK + Z C| 25V0l C/C IOK Z f mtr bu

0#£c€O0Kk becdi ™

where the last step follows from the Poisson summation formula, and w de-
notes the number of roots of unity in K. Now we note that: Vol(C/c '0k) =
VD[N (c), so that using our formula for f from Section 2, we get:

1
VB uty) = i) X (5y1Pkl) M@
0#£ce0k

2—-2s s
Y% s
( s—1 + Z ()
07beCdK

b s—1

v

K(s—1, 7rv|b|)emtr(u{’)) .

13



After some more computation, we arrive at the final expression:

s , 2w mu
v "E(s,u+vj) = wlk(s) + \/W s—_1 (k(s—1) (14)
2 m° s—1_mitr(bu) 1-s
+ — Z |b]” "e™ W K (s — 1, wolb]) Z N(c) (15)
V |DK| F(S)’U Oyébed;(l c|bd i

Now, with this expansion, we may derive the desired properties of the
Eisenstein Series. Namely, they are examples of automorphic eigenforms,
and are orthogonal to the cusp forms with respect to our inner product.
Thus we begin with

Proposition 6 Fizing s with Re(s) > 2, the Eisenstein series E(s,z) is an
automorphic eigenform with respect to the full modular group T' = SLo(Ok).

PrOOF: We must check three properties: First, that it is invariant under
the action of the modular group, second, that it is an eigenfunction of the
Laplacian, third, that it satisfies the growth condition. It is easy to check
the first of these, for elements of I' represent precisely those transformations
that fix the lattice Ok . Thus from the definition of the Eisenstein series in
equation (13), we see that it is invariant under the action of I.

Now we show that it is an eigenfunction of the Laplacian. Let 7(z)
denote the j component of z for all z € S as before. Then we compute the
Laplacian of 7(z)?:

%P %P ovP

NP — 2 — _

Ln(u+wvj)! = v (81}2 +48u8u> Cr
= plp—2)vP.

Taking P to be the parabolic subgroup of G as defined just before Proposi-
tion 3, we may rewrite the Eisenstein series by

Bs,2)=n(z)" Y leetd F= Y gy

0#(c,d)e0%, yeE(PND\I

Then by equation (12), E(s,z) is an eigenfunction with eigenvalue A =
4(s — s2).

Finally, we must show that the Eisenstein series satisfies our growth
condition. Namely we must check that as v — oo, E(s,u + vj) is bounded
by some power of v. However, this follows from its expansion in K-Bessel

14



functions (15). For since K(s,v) decays rapidly as v — oo, asymptotically
E(s,u + vj) is determined by it’s constant term. But this, we have seen,
involves only polynomial growth in v. Thus E(s,u + vj) is an automorphic
eigenform.

Q.E.D.

Now we show that in addition to being in the space A(\,I') of auto-
morphic eigenforms, the Eisenstein series lie in a space orthogonal to the
cusp forms. To see this, let A = C/Ok and B = {y | y > 0}, so that the
(PNTI)\S is the product of A and B. Then we may compute, given a cusp
form f:

[ [Tawoi ¥ atatutog) » S

YyEP\D

—  _dudu
= Y [ ] TSt s,
BJA 21

yeP\I'

by invariance of f as well as the measure dy under transformation by v € I
But this last integral is clearly zero, since the constant term of f is zero.
Moreover, the inner product, (f(z), E(s, z)) is just a constant multiple of this
integral, so we have shown that (f(z), E(s,z)) = 0. Hence the Eisenstein
series are orthogonal to the cusp forms.

The final property of the Eisenstein series that we discuss is its mero-
morphic continuation and functional equation. We have:

Proposition 7 The function E(s,z) extends to a meromorphic function in
s on all of C, whose only possible poles are at s = 2 and s = 0. More

precisely, if we let
D(s,z) =T(s)m *E(s, 2),
then D can be continued to a meromorphic function on C and D satisfies

the functional equation: D(s,z) = D(2 — s, z).

PROOF: We check the meromorphic continuation and functional equa-
tion by checking them term by term using the expansion (15). We may write
the terms of the expansion of D(s,u+wvj) beginning with the constant term:

20 71_175,0275
|DK| s—1

ag = wl'(s)7 *v*(k(s) + [(s)(k(s—1), (16)

15



and the further terms:

20 K (s — Lolpl) T N() (17)

For the meromorphic continuation, we know that the constant term has a
meromorphic continuation derived from that of the zeta function. Namely,
recall that if we let &(s) = 27* Dk 27 5'(s)(k (s), then &(s) has an meromor-
phic continuation to all of C, whose only poles are simple poles at s = 0 and
s = 1. Furthermore, each non-constant term is an entire function, since the
K-Bessel function is. Finally, since the sum, 3. ,q, N(c)'™* has only poly-
nomial growth in b, while the K-Bessel function satisfies |K (s — 1, wv[b|)| <
Ce 2™ with s in any compact set, the series (15) converges for all s. This
yields the meromorphic continuation of D(s,z). The only possible poles
come from the poles in the constant term, at s = 0 and s = 2, since the
poles at s = 1 cancel each other.

Now let us derive the functional equation. We will restrict ourselves to
the case when the class number of K is 1, though the functional equation
holds for arbitrary class number. Again, we verify this term by term. For the
constant term, letting £(s) be as before, recall that &(s) = &(1 — s). Hence
by (16), we may see that the constant term satisfies the desired functional
equation. For the general term in (17), we first apply the identity (5) to the
K-Bessel function that is present. Now, note that since the class number of
K is 1, we also have the identity:

oY T = Y g

clbd i c9=by/Dx

= Bl Y 1™

clbd x

ap =

Applying this with 7 = s — 1 finishes the functional equation for the general
term (17). Thus we have derived the entire functional equation, D(s,z) =
D(2 — s, z).

Q.E.D.
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