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Abstract

In this paper, we establish some numerical evidence for Artin’s conjecture in
the icosahedral case. Specifically, we consider an extension of the rationals
with Galois group As and compute the Artin L-series associated to a nat-
ural three-dimensional representation. While Brauer’s theorem guarantees
the meromorphic continuation and functional equation of this L-series, we
numerically check the analytic continuation. By carrying this out for some
twists of this L-function as well, we provide evidence for the modularity of
the three-dimensional representation via the Weil converse theorem.

This paper was written under the guidance of Professor Andrew Wiles
during the 1998-99 academic year. 1 would also like thank Professor Peter
Sarnak for his advice during the later stages of the thesis, especially for his
suggestions that formed the theoretical foundation for the third chapter.
Finally, I would like to thank my family for allowing me the opportunity to
carry out this research at Princeton University.



Chapter 1

Introduction

Before giving evidence for Artin’s conjecture, we give some background in-
formation on Artin L-functions, and a precise statement of their conjectured
functional equation. For this introduction, we follow closely the treatment in
the survey article by Martinet [7]. Then we briefly discuss modular forms for
G Lo, and state a conjecture which may be seen as a G Lo case of Langland’s
program.

1.1 Artin L-functions

In 1923, Emil Artin gave his first definition of a new kind of L-series (c.f.
[4]), associated to finite-dimensional Galois representations. Namely, given
a finite Galois extension of number fields E/K with Galois group G, and a
representation p:G — GL(V) of G on a finite-dimensional complex vector
space V', he defined the L-function, when Re(s) > 1:

1
det (1 — p(Fry)N(p)~—*)

L(s, p)unr = H

© unramified

(1.1)

Here Fry, denotes a Frobenius element associated to g of K; note that since
all such Frobenii are conjugate, the L-function above is well-defined. Mo-
tivated by the proof by Hecke of the functional equation for abelian L-
functions in 1917, Artin conjectured the existence of a functional equation
relating L(s,p) and L(s,p), where p denotes the complex conjugate of p.
Moreover he conjectured that the above L-function extends to an entire
function in the complex plane as long as p does not contain the trivial rep-
resentation.
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Later, in 1930, Artin defined local factors at the ramified primes, and
at infinity, for a number of reasons. First, he wanted operations on Galois
representations to correspond nicely to operations on the L-series. Namely,
the L-function of the direct sum of two representations should equal the
product of the two L-functions (this is satisfied by Artin’s first definition
of L-series however). Also, lifting a representation from a quotient, and
inducing a representation from a subgroup should not change the L-function.
Finally, Artin wanted to define the L-function at these additional places in
order to get a simple functional equation.

With this in mind, we give the local factors at the ramified primes as
follows: at a ramified prime p of K, we fix a prime P of E lying above p, and
let Dp and Ip denote the decomposition group and the inertia group of P.
Then the quotient Dp/Ip is isomorphic to the Galois group of the residue
field extension, so we may define a Frobenius element Fr, as an element of
Dp/Ip. Now, let V!# denote the subspace of V fixed by inertia. Then we
define the local L-factor at p by:

1

Lls,p)o = detyr, (1— N(p) *Fr,)’ (12)

Now, we define the total Artin L-function L(s, p) to be the product of
all the (finite) local factors that we have defined. It is defined initially in the
right half plane Re(s) > 1, and satisfies the induction and lifting properties
we mentioned before. For the purposes of discussing the functional equation,
it remains to discuss the local factors at the infinite primes — composed of
a series of [-factors and a constant which measures the ramification of p.

First, for the I-factors, let y(s) = n~%/?I'(s/2), and for each infinite
place v of K we define local factors 7,°(s) as follows: if v is complex, we
define 7, (s) = (y(s)y(s + 1)) If v is real, then for each place w of E
lying above v, there exists a decomposition group D,, of order 1 or 2. The
generator is the analogue of the Frobenius element at the infinite prime v, so
we call it Fr,; it is well defined up to conjugacy class. Now every eigenvalue
of p(Fr,) is either 1 or —1 so let dy and d_ be the multiplicities of each
of these eigenvalues. Then we put 7,%(s) = y(s)%v(s + 1)%-. Finally, we
define the whole I'-factor for p by

IO | B AIC) (1.3)

v archimedean

Finally, we define the constant A(p) which measures the ramification of
the Galois representaion p. For each (finite) prime p of K, choose a prime P
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of E lying above p. Let G; denote the sequence of ramification groups at
(where Gy is the inertia group) and let g; be the order of G;. Let V¢ denote
the subspace of V fixed by p(G;). Then we define the local conductor:

Flo.p) =3 2 (dim(V) — dim(VE)).
i=0 90

Then f(p, p) = 0 at almost every prime p of K, and is in fact an integer, so
we may define the Artin conductor by:

flp) =TI %)
§

Then the Artin conductor is an ideal of K, and allows us to define the
constant

A(p) = ldi """ N o (f (). (1.4)

Here di denotes the absolute discriminant of K.
We are now ready to define the enlarged L-function for Re(s) > 1:

A(s, p) = A(p)*"*7,(5) L(s, p)- (1.5)
The following is an unproven conjecture, stated first by Artin (c.f. [4]):

Conjecture 1 (Artin’s Conjecture) If p does not contain the unit character,
then the function A(s,p) defined above for Re(s) > 1 extends to an analytic
function of the complex plane, and satisfies the functional equation A(1 —
s,p) = W(p)A(s,p) for a complex constant W (p) of absolute value 1.

It was proven in 1947 by Brauer [1] that A has meromorphic continuation
and satisfies the above functional equation. More specifically, Brauer shows
that the character of any representation of a finite group G may be expressed
as a linear combination (with integer coefficients) of induced characters from
1-dimensional representations of subgroups of G. This allows us to express
any Artin L-function as a product of integer powers of abelian L-functions
in the sense of Hecke, and implies that A extends to a meromorphic function
on the complex plane.

If p is a two-dimensional Galois representation, then we can break down
Artin’s conjecture as follows: composing p with the natural projection
GLy(C) — PGLy(C) yields a projective representation p’. The image of
p' is a finite subgroup of PGLy(C) = SO(3,R), which by classical results is
isomorphic to a cyclic group, a dihedral group, or one of the groups: Ay, Sy,
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or As. A4, S4, and As may be realized as the groups of proper symmetries
of the tetrahedron, the octahedron, and the icosahedron respectively.

There has been a tremendous amount of effort put into just the two-
dimensional case of Artin’s conjecture. The cyclic case is follows directly
from Hecke’s theory of abelian L-functions. The dihedral case also reduces
without too much difficulty to the abelian theory. In the past few decades,
the work of Langlands [5], and later of Tunnell [8], have put to rest the two
solvable cases — the tetrahedral and octahedral cases — through advanced
techniques using (among other things) the trace formula and converse the-
orems. In the current state of affairs, only the icosahedral case remains
unproven.

Originating with the work of Buhler in his thesis (c.f. [2]), the icosa-
hedral case of Artin’s conjecture has been proven in a handful of examples.
However, all of these examples have been cases where the icosahedral rep-
resentation p was odd, i.e. the determinant det o p corresponds to an odd
Dirichlet character. (Alternatively, we may classify p as being even or odd
based on whether det(p(o)) = +1 where o is a complex conjugation). There-
fore in this thesis we focus on the even icosahedral case. In this case very
little is known, though Artin’s conjecture, and the broad-sweeping Lang-
lands program predicts a great deal.

1.2 Automorphic Forms on GL,

In general, the Langlands program predicts a correspondence between Ga-
lois representations (actually representations of the larger Weil group) into
GL,(C) and “automorphic cuspidal representations” of G L,, over our ground
field. This correspondence moreover should respect natural operations on
representations, such as tensor products, symmetric and alternating powers,
etc... While it would go too far astray (and be far too much to include) to
discuss the Langlands program in this degree of generality, we can discuss
the Langlands program in the 2-dimensional case from the classical point of
view.

We consider automorphic cuspidal representations of G Lo classically as
functions on the upper half-plane H = {z € C|Im(z) > 0}. These functions
come in two very distinct types, which we will describe in this section. Such
a function f may be a holomorphic modular form, or a Maass form, which is
not holomorphic, but is an eigenfunction of the Laplacian on H. Holomor-
phic modular forms have been studied now for over a century, originating
with the study of elliptic modular functions in the 19" century. The study
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of Maass forms began in the 1949 paper of Maass [6]. We follow Bump’s
text [3] particularly in our treatment of holomorphic modular forms and
Maass forms. Further information and proofs may be found there.

Let I'y(D) = {( Z Z) € SLQ(Z)|CEO(D)}. We define the non-

Euclidean Laplacian on H: A = —¢? (8—2 + 6%22). Then we have the fol-

2
lowing definitions:

Definition 1 A holomorphic modular form of weight k for To(D) is a com-
plex valued function f on H satisfying the following three conditions:

e f is holomorphic.

e Forally = < Z Z ) € I'y(D) we have f(yz) = (cz + d)¥ f(2).

e f is holomorphic at the cusps of To(D).

Definition 2 A Maass form (of weight 0) for To(D) is a complex-valued
function f on H satisfying the conditions:

e f is smooth.

e f is an eigenfunction of the Laplacian A.

o f(y2) = f(2) for all y € To(D).

e f has at most polynomial growth at the cusps of To(D).

We let M(k, D) denote the space of holomorphic modular forms of weight
k for I'o(D). Similarly, we let Ma(D, ) denote the space of Maass forms
for T'o(D) with eigenvalue A. To understand these spaces of modular forms

better, note that I'¢(D) contains the element < (1) } ), so that any f in
M(k,D) or Ma(D, ) has a Fourier expansion:

o0

f2)= Y ar(y)e™. (1.6)

r=—00

Now if f is a holomorphic modular form, then the coefficients a,(y)
have the form a,(y) = a,e 2™, for constants a, and a, = 0 when r < 0.
By moving a cusp c¢ for ['o(D) to infinity, we may obtain other Fourier
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expansions of f with coefficients a., for each cusp. If a.9 = 0 for all cusps
¢ then we say that f is a cusp form. We denote the subspace of M(k, D)
consisting of cusp forms by S(k, D). For every holomorphic modular form
f, we define the Dirichlet series L(s, f) = >7°; apn~*. Then we define the
enlarged L-function by:

A(s, f) = (2m) 7T (s)L(s, f)-

If f is a Maass form, f € Ma(D,\), then by the differential equation
which f satisfies, and our given growth condition, we arrive at a,(y) =
ar/yK,(27|r|y) where K, denotes the K-Bessel function, and A\ = % — 0.
Moreover, either a, = a_, or a, = —a_,, according to which we say that
f is even or odd, respectively. We say that f is a Maass cusp form if
ag = 0 and similarly for every other cusp. We denote the subspace of cusp
forms of Ma (D, ) by SA(D, A). For every Maass form, we again associate a
Dirichlet series: L(s, f) = > 021 apn . If €is 1 or -1, depending on whether
f is even or odd, we define the enlarged L-function by:

It is an exercise in calculus (and one that is done in Bump’s text [3])
that when f is a holomorphic modular form or a Maass form, we have the
formula:

/ °°f(z'y>y“/2dy—y = AGs. f). (L.7)

We are now able to precisely state the conjectured relationship between
2-dimensional Galois representations and modular forms. It is the purpose
of this thesis to establish evidence for this conjecture in the icosahedral case.

Conjecture 2 Suppose p is a continuous 2-dimensional complex represen-
tation of the Galois group Gal(Q/Q), with Artin conductor D. Let A(s,p)
denote the enlarged Artin L-function associated to p as in the previous sec-
tion. Then if p is odd (respectively even) there exists a holomorphic cusp
form f of weight 1 (respectively a Maass cusp form of eigenvalue 1/4) with
respect to the congruence subgroup I'y(D) satisfying A(s, p) = A(s, f).

The analytic continuation and functional equation of A(s, f) for holo-
morphic cusp forms or Maass cusp forms f is well known, so that the above
conjecture implies the 2-dimensional case of Artin’s conjecture. However, we
wish to verify the above conjecture by checking Artin’s conjecture in a series



1.2. AUTOMORPHIC FORMS ON G Ly

of cases. We proceed as follows: given a two-dimensional projective Galois
representation p : Gal(Q/Q) — PGLy(C), a lifting of p is a representation
p: Gal(Q/Q) — GLy(C) such that mop = p where 7 denotes the projection
from GL2(C) to PGLy(C). We say that such a projective representation p
is modular if every lifting p satisfies our Conjecture 2.

Now every such projective representation p yields a representation « :
Gal(Q/Q) — GL3(R) via the maps: PGLy(C) = SO(3,R) — GL3(R).
Then for every lifting p of p, we see that the adjoint square lift Ad(p) = a. It
is a deep result, essentially proven by Flicker using trace formula techniques,
that when this adjoint square lift o is modular in the sense of Langlands,
then p itself is modular. Thus we give evidence for our Conjecture 2 by
checking Artin’s conjecture numerically for this adjoint square representa-
tion Ad(p) which is not too difficult to compute, and some of its twists. By
the converse theorems of Weil and Jacquet, this implies the modularity of
Ad(p), which by the result just stated, implies the modularity of p.



Chapter 2

The Artin L-Function of an
As Extension

We fix a totally real Ay extension E of Q, defined as the splitting field of a
quintic polynomial g with integer coefficients. In our tests, we have used the
polynomial g(z) = z° + 5z* — 723 — 1122 + 10z + 3, which was taken from
the tables in the back of [2]. We fix a three-dimensional representation
p: Gal(E/Q) — GL3(C). The Artin L-function L(s,p) is defined as an
Euler product, as in the introduction. It is the purpose of this chapter to
describe the computation of these local factors in our As case.

2.1 Frobenius Elements in an A; Extension

It is very helpful, since we are considering the natural representaion p of As,
to understand the group in terms of the symmetries of the icosahedron. As
is a simple group of order 60. It has five conjugacy classes, which we name
according to their order: 1A, 2A, 3A, 5A, and 5B. 1A consists only of the
identity element. 2A consists of 15 rotations by 180 degrees, one for each
pair of opposite edges of the icosahedron. 3A consists of 20 rotations, two
for each pair of opposite faces. bA and 5B contain the 24 rotations about
axes through the vertices of the icosahedron. The character table for As is

given below, where u = =52 and v =
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As | 1A | 2A | 3A | 5A | 5B
il 1] 1 1]1]1
x3 | 3 | -1 u v
X5 | 3 | -1 v | u
Y| 4 1] -1
vs| 5 11 -1]0]o0

We are most interested in the character x3 = tr(p). Now fix a prime p,
and assume for now that p is unramified in E. To compute the local factor
of the L-series L(s, p), we need to know the conjugacy class of the Frobenius
element Fr,. Let E, denote the completion of £ at a prime lying above p,
and let k£/F, denote the residue field extension. Recall that £ was given as
the splitting field of a quintic polynomial g, so that k is given as the splitting
field over F, of the reduced polynomial g. Now, there are a number of ways
in which g can factor over Fy:

e g could split into five distinct linear factors, in which case £ = F,, and
Fr, is the identity element.

e ¢ could split into two quadratic and one linear factor, in which case we
see that Fr, has order 2 or 4. However, A5 has no elements of order
4, so Fr;, has order 2.

e g could split into one cubic and two linear factors, in which case Fr,
has order 3.

e g could not split at all, in which case Fr, has order 5.

It is not hard to see that these are the only options, by the structure of
As. For instance, g cannot split into one quadratic and three linear factors,
since otherwise Fr, would act as a transposition on the roots of g. From the
possible factorizations of g, we have an algorithm to find the order of Fr, for
any unramified prime p. The order of Fr, almost determines its conjugacy
class; however, looking at the character table of A5, we must be able to
distinguish the conjugacy classes 5A and 5B in order to determine p(Fr)).

If Fr, has order 5, we follow Buhler in [2] in using an idea of Serre to tell
whether Fr,, is in 5A or 5B. Since E has Galois group As, the discriminant
of g is a perfect square: ¢ = D?. Since Fr, has order 5, the completion E,, is
an unramified extension of degree 5 over Q,. We have the following useful
criterion:
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Proposition 1 Let y be a root of g in E,. Then

I (F'() - Fri(y) = +D. (2.1)
0<i<j<4

The sign of D determines whether Fr, is in conjugacy class 5A or 5B.

Of course, if p # 2 then it suffices to consider the above formula in the
residue field extension k/F,. In this extension, the Frobenius element Fr,
reduces to the usual Frobenius automorphism z + zP. Thus for odd primes,
the above product is not too difficult to compute, using fast algorithms for
finite fields. However, when p = 2, we must be more careful. The above
formula still holds, but reducing mod 2 renders it useless, since we can’t
distinguish D from —D mod 2. Instead, we reduce mod 4, requiring us to
analyze the action of Frobenius on E, mod 4.

Let R, be the valuation ring of E,. Then, viewing 7 = Frg as the
generator of Gal(E,/Qs), we have: 7(z) = 2% + 2a(z) (mod 4) for z € R,,
for some function «. Now since 7 is an automorphism, we have 7(u + v) =
7(u) + 7(v), and 7(uv) = 7(u)7(v), from which we may compute:

a(u+v) = a(u) + a(v) —uv,

a(uv) = a(u)v? + alv)u?.

Hence for any polynomial P with integer coeflicients, we may compute induc-
tively a unique polynomial P such that a(P(u)) = P(a(u)) for all u € R,.
Now, letting y be a root of ¢ in E, again, we see that 7(g(y)) = g(7(y)) = 0.
Hence a(g(y)) = 0. Therefore a(y) is a root of g in R,. Hence we may
effectively compute a(y) for any root y of g, which allows us to compute the
action of Frobenius on R,/4R,.

We now have the ability to determine the conjugacy classes of Frobenii
at all unramified primes. For convenience, we list the L-factors that will
arise for each possible conjugacy class. In the following, (5 denotes a fixed

5 root of unity:
o Iy € (14) = L(s,p)p = (1 —p~*) 77,
o Fry € (24) = L(s,p)p = (1 —p °) "1 +p *) 2
o Fr, € (34) = L(s,p)p = (1 —p~*) 71,
o Frpe (54) = L(s,p)p=(1—p*) 11 = Gp *) (1= 'p %),
o Fry€ (5B) = L(s,p)p = (1—p *) (1 =¢p ) 11— ¢ %p*) !

10



2.2. THE RAMIFIED PRIMES

2.2 The Ramified Primes

If E is an A5 extension of the rationals, and p ramifies in this extension, then
there are 19 possible types of ramification that may occur, as enumerated
in Buhler [2]. Here we provide a table, derived from Buhler’s, of the types
of ramification, the resulting L-factors, and the local conductors for the
natural 3-dimensional representation of As. The ramification groups are
listed beginning with the decomposition group. Here C,, denotes the cyclic
group of order n, D,, denotes the dihedral group of order 2n if n > 2, Dy
denotes the Klein group of 4 elements, and A4 denotes the alternating group
on 4 symbols.

‘ Type ‘ Ramification Groups ‘ Conductor ‘ L-Factor ‘

1 Cs,Cs p2 (1 —p_s)_l
2 Cs,Cs p2 (1 —p_s)_l
3 Cy, Cy p2 (1 —p_s)_l
4 D5, Cs p2 (1 —l—p_s)_l
5 D3, Cs P’ (1+p) "
6 D, Cy p° (1+p*)
7 Cs,C5,Cs p* (1—p>) "
8 D5,D5,C5 p4 1

9 Ds5,C5,Cs p4 (1 —l—p_s)_l
10 Cs,C5,C}3 p4 (1 —p_s)_l
11 D3, D3,Cs p 1

12 D3, C35,Cs p4 (1 —l—p_s)_l
13 D3,D3,03703,03 p6 1

14 Cy,Cy,Cy p4 (1 —pis)fl
15 CQ,CQ,CQ,CQ p6 (1 —pis)fl
16 DQ,CQ,CQ p4 (1 +p75)71
17 A4,D2,D2 p6 1

18 Dy, Cy, Cy,Cy pG (1 —l—p_s)_l
19 Dy, Dy, Dy, Cy,Cs p® 1

11



Chapter 3

Numerical Tests for
Analyticity

In this chapter, we derive a method to numerically test Artin’s conjecture
in specific cases. We fix an Artin L-series given by L(s) = >_7¢, o for
Re(s) > 1. Let y(s) denote the I'-factors associated for this L-function,
and let A, W denote the Artin conductor and root number, respectively.
Let A(s) = A%/?y(s)L(s) denote the enlarges L-function, so that A(s) =

WA(1 —s).

3.1 An Approximate Functional Equation

We begin by assuming Artin’s conjecture holds to derive an approximate
functional equation that estimates A (%) For notational convenience, let

R, denote the line in the complex plane given by Re(z) = o (oriented
upwards). We begin with a lemma:

Lemma 1 Let G(s) be a polynomial, and define:
ds

S

V) = 5 [, v s+ PO T

Here o can be any real number greater than 0 by Cauchy’s theorem. Then
V(y) decays faster then any polynomial as y — oo, and asy — 0, V(y) =
O(y™Y), for t an arbitrarily small real number.

Proof: As y approaches infinity, we note that:

[ vts + 660 (3.1
Ry

S

2nlV(y)l =

12
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< [ it + PIGEI 32)
< v [ bt PICEIT (33

Now this last integral converges due to the rapid decrease of y(z) as Im(z) —
oo. Hence |V (y)| < y ?C for any o > 0, so V(y) decreases rapidly as y — oo.
As y approaches zero, we follow the same approach, moving the contour close
the imaginary axis to get our desired estimate. <

We may now apply this lemma to derive an approximate functional equa-
tion for Artin L-series:

Proposition 2 Let X be a positive real number, and G(s) be a polynomial
satisfying G(0) = 1 and G(s) = G(—s) for all s. Define the function V(y) as
in the lemma above. Then if Artin’s conjecture holds for our Artin L-series,
i.e. it extends to an entire function in the complex plane, then we have the
following identity:

A(3) - DAty (L) + S aviny (15),

n=1

Proof: Consider the integral, where 0 < o < %:

o 2 s

I= ! /RGA<5+1> XSG(S)ﬁ. (3.4)

Since the I'-factor v(z) decays rapidly as I'm(z) — oo, and eveything else
in the above integral has at most polynomial growth along our contour,
the above integral converges uniformly. Therefore, substituting in A(s) =
As/ 2y(8) 3 o and exchanging summation and integration yields:

I = ia—\/%Al/‘*% /R< "\/Z)_sy (s-{—%) G @)

_ ni_o:l %Al/‘*v <X7/Z> . (3.6)

Now we evaluate I again, but this time shift the contour of integration
from R, to R_,. This picks up an extra term (and only one, by the assumed
analyticity of the L-series) due to the pole of 1 at s = 0. Since G(0) =1
and X? = 1, we arrive at the expression:

1 1 s ds 1
I_2m'/R_gA<S+2>X G(S)s +A<2>.

13
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We apply the functional equation of A, and the given identity G(s) = G(—s)

to get:
1 1 s ds 1
1—2—7”/_0A<§—8>XG(—8)?+A<§>
Now making the substitution w = —s, we finally see that:
1 1 d 1
I = _—,/ A <w + —) X Gw) ™ 4+ A <_> (3.7)
21t JR, 2 w 2

_ _g %Al/‘*v (%) +A<%)_ (3.8)

Putting the two expressions (3.6), (3.8) together, we arrive at the desired
result.

3.2 Detecting Deviations from Artin’s Conjecture

Now let us assume the generalized Riemann hypothesis, and see what would
happen if Artin’s conjecture were false for our L-function. Then our L-
function would have poles located on the line Re(s) = 1/2, say at points
% + i7, for 7 in some (most likely infinite) set of real numbers 7. The
approximate functional equation derived above no longer holds, but we may
modify it with an error term based on 1" as follows:

Proposition 3 With the same notation as the previous proposition, let us
assume Artin’s conjecture does not hold. Then with T as above, suppose
that r; is the residue of L(s) at the pole %+’iT. We then have the following
expression for A(1/2):

1 > a n > a nX
A<—>:ZA1/4 "V( >+2A1/4_" <_>+EX 3.9
2 — v \XVA/ = vno \VA (0, (39)
where the error term E is given by:

B(XY) =AY Y (0VA)y (5 +ir) Glir),

1T
T€T

Proof: Following the proof of our previous proposition, note that when we
slide the contour from R, to R_,, we pick up a new term for each pole
of L(s) as embodied in our error term above. To make this rigorous, we
must only note that the rapid decay of our I'-factor as 7 approaches infinity
guarantees the convergence of the sum for E(X). ¢

14
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Our previous two propositions give us a robust numerical test for Artin’s
conjecture in any specific case, that requires only about v/A terms of the L-
series to apply. Namely, if Artin’s conjecture holds, then our first proposition
allows us to evaluate A (%) numerically, by using any parameter X; the value

computed for A (%) will not depend on X. However, if Artin’s conjecture

fails, then the error term E(X) depends very much on X, and therefore the
sum:

Sy (1) e 3ty ()

n=1

will depend on X.

In the appendices, we have applied this numerical test to give strong
evidence for Artin’s conjecture for a three-dimensional Galois representa-
tion and some twists. As stated in the introduction, this gives evidence for
the modularity of a family of two-dimensional icosahedral representations.
While our evidence certainly doesn’t approach a proof, it is essentially equiv-
alent to verifying that there are no low-lying poles in our Artin L-function.
These would almost without a doubt occur if Artin’s conjecture failed. Thus
we can safely say that a family of icosahedral Galois representations corre-
spond to Maass forms.
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Appendix A

Numerical Methods for
Artin L-Functions

Here we include the code used to run numerical tests on Artin’s conjecture
in the icosahedral case. The included code was written for Maple V, release
5, and run on a Pentium II 350 MHz personal computer.

A.1 Computation of Frobenius Conjugacy Classes

In this section, we give procedures to determine the conjugacy class of
Frobenii in an As extension over Q. There are five conjugacy classes in
the group As, which we call 14, 24, 3A, 5A, and 5B; 1A consists of the
identity element, 2A consists of the elements of order 2, etc... It is not dif-
ficult to determine the order of a Frobenius element, but it is a little tricky
to determine whether a Frobenius element of order 5 lies in 5A or 5B.

We first initialize the necessary packages and functions.

NoPrimes := 99000:
Digits := 15:
readlib(ifactors):
with(linalg):
readlib(GF):

vV V. V VvV V

The following procedure determines whether the Frobenius element as-
sociated to an odd prime p lies in conjugacy class 5A or 5B (given that it
lies in one of these). To do this, it evaluates the product:

K= JI (Friy)-Fr/Ww).
0<i<j<4
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A.1. COMPUTATION OF FROBENIUS CONJUGACY CLASSES

Then the conjugacy class is 54 or 5B depending on whether this product is
equal to the discriminant D, or —D respectively.

Test5AB := proc(f::polynom(constant,y),p::prime)
local GP,F,i,j,P,H,D,K;
GP := GF(p,5,f):
F[0] := GP[ConvertIn](y):
for i from 1 to 4 do

F[i] := GPL[* "1 (F[i-1],p):
od;
P := GP[1];
for i from 0 to 3 do
for j from i+l to 4 do

P := GP[‘*‘1(GP[‘-“](F[i],F[j1),P):
od;
od;
D :
K .
if

Normal (sqrt(discrim(f,y))) mod p:
GP[ConvertOut] (P):
= K then

= g

elif D = -K mod p then
-1:

else O:

fi;

end:

VVVVVVVVVVVVVVVVVVVYVVYV

The following procedures determine whether the Frobenius element as-
sociated to 2 lands in conjugacy class 5A or 5B, again given that it lands
in one of these. Essentially, we compute the same product as before, except
we must work modulo 4 instead of mod p. The difficulty lies in figuring out
how the Frobenius automorphism acts on the degree 5 unramified extension
of Q2 up to congruence mod 4.

> ComputeG := proc(f::polynom(constant, y))
> local Gpower,n,G,RP,i,a,ga,m;

> global x;

> alias(r=Root0f(f));

> Gpower := proc(t::integer)

> txr” (2%t-2) *x;

> end:
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A.1. COMPUTATION OF FROBENIUS CONJUGACY CLASSES

vV VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYyV

n := degree(f,y);
G := 0;
RP := 0;

for i from 0 to n do
a := coeff(f,y,i);
ga := ((a-a”2)/2)*r~(2xi) + axGpower(i);
m := a*r’"i;
G := G + ga - mxRP;
RP := RP + m;

end:

Fro

end:

Fro

od;

G;

b0fr := proc(f::polynom(constant,y))
local G,j,F;

G := ComputeG(f);

j := Root0f(G,x);

F =172 + 2%xj;

bProd := proc(f::polynom(constant,y))

local FR,F,j,i,a,P;

FR[1] := Expand(FrobOfr(f)) mod 4;
FR[2] := Expand(FR[1]"2) mod 4;
FR[3] := Expand(FR[1]73) mod 4;
FR[4] := Expand(FR[1]"4) mod 4;
FR[O] := 1;

F[1] := FR[1];
for j from 2 to 4 do
F[j1 := 0;
for i from 0 to 4 do
a := coeff(F[j-1],r,1i);
F[j]l := F[j] + a*FR[i];
od;
od;
F[0] := r;
P :=1;
for i from 0 to 3 do
for j from i+l to 4 do
P :=P x (F[i] - F[j1);
od;
od;
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A.1. COMPUTATION OF FROBENIUS CONJUGACY CLASSES

> Normal (P) mod 4;

> end:

> TestbAB2 := proc(f::polynom(constant,y))
> local K,D;

> K := FrobProd(f):

> D := sqrt(discrim(f,y)) mod 4:
> if D = K then

> 1:

> elif D = -K mod 4 then

> -1:

> else O:

> fi;

> end:

This procedure computes the conjugacy class of the Frobenius element
associated to a given prime p. First, it checks whether p is a ramified prime,
and if so outputs 0. Then, if the polynomial f is irreducible mod p, we know
that the Frobenius element is in a conjugacy class of 5-cycles. If p is not a
ramified prime, the procedure tests whether f is irreducible, and if so, tests
which conjugacy class of 5-cycles the Frobenius element is in. Finally, if p is
not ramified, and f is not irreducible mod p, the procedure counts the roots
of f mod p to decide which conjugacy class the Frobenius element lies in.

> FindConj := proc(p::prime, f::polynom(constant, y))
> local A,L,B;

> A :=0;

> if discrim(f,y) mod p = O then

> A :=0;

> elif Irreduc(f) mod p then

> if p > 2 then A := 5 * Test5AB(f,p);
> else A := 5 * TestbAB2(f);

> fi;

> else

> L := Roots(f) mod p;

> B := nops(L);

> if B =1 then A := 2;

> elif B = 2 then A := 3;

> elif B = 5 then A := 1;

> else A := 0;

> fi;
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A.1. COMPUTATION OF FROBENIUS CONJUGACY CLASSES

V V V VYV YV VVYVVYV

fi;

A;

end:

GenConj := proc(p :: integer, f :: polynom(constant, y))
local A;

if p = 2 then A := 0;

elif isprime(p) then A := FindConj(p,f);
else A := 0;

fi;

A;

end:

Here we use our previous procedures to produce a list c[i], where ¢ is a

number representing the conjugacy class in A5 of the Frobenius element of
1 when ¢ is prime. The conjugacy classes of elements of order 2 and 3 are
represented by values of 2 and 3, and the two conjugacy classes of order 5
are represented by 5 and -5. The list has elements for primes p up to a given

n.

vV V. V VvV V

V V V V V V V V

ListConj := proc(f::polynom(constant, y), n::integer)
local L,C,i;

L := [seq(i,i=1..n)];

C := map(GenConj,L,f);

end:

These procedures save and load a list computed by ListConj:

SaveCList := proc(f::polynom(constant, y),
n::integer, fn::string)

local R;

R := ListConj(f,n);

writedata(fn,R, [integer]);

end:

LoadCList := proc(fn::string)
local R;

R := readdata(fn, [integer]);
end:

Now we produce a list of the primes up to 100000 and their conjugacy

classes, and save it to a file. The A5 extension of the rationals is given by
the splitting field of the polynomial g below; g was taken from the table of
As quintics in [2].
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A.2. NUMERICAL TESTING OF ARTIN’S CONJECTURE

> g =y°5 + bxy™4 - Txy"3 - 11%xy~2 + 10*xy + 3:
> SaveCList(g,100000,"c7947_100K.txt"):
> CL := LoadCList("c7947_100K.txt"):

A.2 Numerical Testing of Artin’s Conjecture

In this section, we follow the tests described in chapter 3 of the thesis to test
Artin’s Conjecture for a given 3-dimensional representation, and one of its
twists. To speed up computation, we compute some recurring coefficients in
advance. There are a number of tasks to take care of individually:

A.2.1 Computation of the Coefficients of the Artin L-Function

We compute the coefficients of our L-series by computing the prime power
coefficients, then extending multiplicatively to all positive integers. The
following constants occur repeatedly in the coefficients, so we compute them
in advance.

> cbal0] := 1: cba[1] := evalf((1+sqrt(5))/2): cbal[2] := 1:
c5al[3] := 0: <cbal4] := 0:

> ¢5b[0] := 1: c5b[1] := evalf((1-sqrt(5))/2):
c5b[2] := 1: cbb[3] := 0: c5b[4] := 0:

> ¢3[0] :=1: c3[1] := 0: c3[2] := O:

The procedure “PrimePowerCoefficient” computes the coefficients of prime
powers, as its name suggests.

> PrimePowerCoefficient := proc(p :: prime, n :: integer)

> local c,A;

> if p = 3 then A := (-1)"(n mod 2);

> elif p = 883 then A := 1;

> elif p > NoPrimes then A := 0;

> else

> if (p = 2) then ¢ := 5; else ¢ := CL[p]; fi;

> if ¢ =1 then A := (n+1)*(n+2)*(0.5);

> elif ¢ = 2 then A := 0.5 * (n+1+((n+1) mod 2))
* (-1)"(n mod 2);

> elif ¢ = 3 then A := c3[n mod 3];

> elif ¢ = 5 then A := cbaln mod 5];

> elif ¢ = -5 then A := c5b[n mod 5];
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A.2. NUMERICAL TESTING OF ARTIN’S CONJECTURE

> fi;
> fi;

> A;

> end:

Now, since the coefficients of the Artin L-series are multiplicative, we
use this procedure to compute the general n* coefficient of our series.

> LCoefficient := proc(n :: integer)

> local F,Fn,P,i;

> F := ifactors(n);

> Fn := nops(F[2]);

>P :=1;

> if Fn = 0 then P := 1;

> elif (Fn = 1) and (n > NoPrimes) then P := 0;
> else

> for i from 1 to Fn do

> P := P * PrimePowerCoefficient(F[2] [i][1],F[2][i][2]);
> od;

> fi;

> P;

> end:

A.2.2 Gamma-Factors and the Artin Conductor

The following procedures define the gamma-factor associated to our Artin L-
series. The constants “dplus” and “dminus” determine what gamma-factor
is used.

> gammapart := proc(s :: anything)

> evalf(Pi~(-s/2) * GAMMA(s/2));

> end:

> dplus := O:

> dminus := 3:

> GammaFactor := proc(s :: anything)

> evalf ((gammapart(s) “dplus) * (gammapart(s+1) dminus));
> end:

We compute the Artin conductor for our representation:
> ArtinConductor := evalhf((3°2) * (883°2));

ArtinConductor := .7017201 107
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A.2. NUMERICAL TESTING OF ARTIN’S CONJECTURE

A.2.3 Computation of the Non-Elementary Function V

Recall that in equation (3.1) we define a function V' (y) as a certain rapidly
convergent integral. V' is not an elementary function, however it is not very
difficult to evaluate by using an optimized version of Simpson’s rule. The
following procedures are designed to prepare tables that allow for the rapid
computation of V(y) for any real y > 0.

> G = 1:

The function V (y) may be considered as the inverse mellin transform of
a certain function, computed by the procedure “Integrand.”

> Integrand := proc(s :: anything)
> evalf (GammaFactor(1.5+s*I)*G/(1+s*I));
> end:

To numerically compute this inverse Mellin transform, we approximate
the integral via Simpson’s rule. In order to speed up computations, the
interval sizes chosen are not equal. The following parameters determine the
intervals used for Simpson’s rule: “smin” and “smax” are the lower and
upper ranges for the initial pass of Simpson’s rule. “npoints” is the number
of evenly spaced intervals used, each of length “spacing,” between “smin”
and “smax.” The rapid decay of the gamma-factor makes this initial pass a
decent approximation, but to get an even better one, we integrate outside
the interval [smin, smax]. The variables “outsidelength,” “npoints2,” and
“spacing2” describe the additional region integrated over by Simpson’s rule.
Though this procedure is slightly more complicated to program, it greatly
improves the speed and accuracy of computation.

> smin := -5.0:

> smax := 5.0:

> npoints := 500:

> spacing := (smax-smin)/npoints:

> outsidelength := 5.0:

> npoints2 := 100:

> spacing2 := outsidelength/npoints2:

Since we must compute an integral every time we want to compute V (y),
we make tables which store the values of " Integrand” at appropriately spaced
points. We have three different tables, to allow for variable spacing.
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A.2. NUMERICAL TESTING OF ARTIN’S CONJECTURE

VVVVVVVVVVVVVVVVVVVVVYVVYV

MakeIntegrandTablel := proc()

local i,T;
for i from O to npoints do
T[i] := Integrand(i*spacing + smin);
od;
T;
end:
MakeIntegrandTable2R := proc()
local i,UR;
for i from O to npoints2 do
UR[i] := Integrand(i*spacing2 + smax);
od;
UR;
end:
MakeIntegrandTable2L := proc()
local i,UL;
for i from O to npoints2 do
UL[i] := Integrand(smin - outsidelength + i*spacing?2);
od;
UL;
end:

T := MakeIntegrandTablel():
UR := MakeIntegrandTable2R():
UL := MakeIntegrandTable2L():

Now, with the tables computed and stored in memory, we may compute

V(y) rapidly using the following procedures:

vV VV VYV VYV YV VVVYV

Simps := proc(i :: integer, j :: integer, k :: integer)
local a;
if (4 = 0) or (i = j) then
a :=1;
else a := (2 * ((i/k) mod 2)) + 2;
fi;
end:
V := proc(y :: float, N :: integer)
local i, S1, S2, P, pm, P2R, P2L, pm2;
S1 :=0; S2 := 0;
P := evalf(y~(-(1 + I*smin)));
pm := evalf(y~(-N*I*spacing));
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A.2. NUMERICAL TESTING OF ARTIN’S CONJECTURE

> for i from O to npoints by N do

> S1 := evalf(S1 + T[i]#P*Simps(i,npoints,N));

> P := evalf(P * pm);

> od;

> S1 := Re(Sl*spacing*N/3);

> P2R := evalf(y~(-(1 + I*smax)));

> P2L := evalf(y~(-(1 + I*(smin-outsidelength))));

> pm2 := evalf(y~(-I*spacing2));

> for i1 from O to npoints2 do

> S2 := evalf(S2 + UR[i]*P2R*Simps(i,npoints2,1) +
UL [i] *P2L*Simps (i,npoints2,1));

> P2R := evalf (P2R*pm2);

> P2L := evalf (P2L*pm2);

> od;

> 52 := Re(S2*spacing2/3);

> evalf(S1+S2);

> end:

A.2.4 Put it to the Test!

Now we compute A (%) via the sum in Proposition 2. The constant “Acc”
controls the accuracy of our approximation. The constant “nmax” controls
the number of terms used in each sum; the rapid decay of V (y) allows us to
use approximately the square root of the conductor as “nmax.” There are
two sums on the right hand side of Proposition 2 — the first one is computed
by the procedure “Comp1” and the second one by “Comp2.” The procedure
“LambdaOneHalf (X)” adds them up, using the parameter X, twisting the
L-series by a quadratic Dirichlet character given by “T'wist.”

Acc :=1.0:

Compl := proc(X :: integer)

local S, n, term, RootCond, A, nmax, Charn, TwistCond;

TwistCond := nops(Twist);

A := ArtinConductor*(TwistCond"3);

S :=0;

RootCond := evalhf(sqrt(4));

nmax := round(RootCond*Acc)*X;

for n from 1 to nmax do
Charn := Twist[(n mod TwistCond) + 1];
if Charn <> 0 then

vV VV V V V V V YV V.YV
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\4

VVVVVVVVVVVVVVVYyV

V VV V V V V V YV VYV

term := LCoefficient(n) * Charn * evalhf(n~(-0.5))
* V(evalhf (n/(X*RootCond) ), 1);
S := evalhf(S + term);
fi;
od;
S := evalhf((A~0.25) * S);
end:
Comp2 := proc(X :: integer)
local S, n, term, RootCond, A, nmax, Charn, TwistCond;
TwistCond := nops(Twist);
A := ArtinConductor*(TwistCond"3) ;
S :=0;
RootCond := evalhf(sqrt(4));
nmax := round(RootCond*Acc/X);
for n from 1 to nmax do
Charn := Twist[(n mod TwistCond) + 1];
if Charn <> O then
term := LCoefficient(n) * Charn * evalhf(n~(-0.5))

* V(evalhf (n*X/RootCond), 1 );

S := evalhf(S + term);

fi;
od;
S := evalhf((A"0.25) * S);
end:
LambdaOneHalf := proc(X :: integer)
local A;
if X <> 1 then A := evalf(Compl(X) + Comp2(X));
else A := 2 x evalf(Compl(X));
fi;
end:

Now we run the test; as seen below, LambdaOneHalf does not depend on

its parameter X to within 5 or 6 decimal places, suggesting that Artin’s con-
jecture holds for our L-series. Also, we run the test on our L-series twisted
by the primitive quadratic character of conductor 4, suggesting Artin’s con-
jecture holds for the twisted L-series as well.

>

Twist := [1];

Twist := [1]
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LambdaOneHalf (1) ;

9742.04174772344
LambdaOneHalf (2);

9742.04234774679
LambdaOneHalf (3);

9742.04069431213
LambdaOneHalf (4) ;

9742.04409727788
Twist := [0,1,0,-1];

Twist := [0, 1, 0, -1]

LambdaOneHalf (1) ;

1296.95005191828
LambdaOneHalf (2);

1296.91907569532
LambdaOneHalf (3);

1296.94178653574
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